Related Articles

Urine electrooxidation for energy–saving hydrogen generation

Urea electrooxidation offers a cost-effective alternative to water oxidation for energy-saving hydrogen production. However, its practical application is limited by expensive urea reactants and sluggish reaction kinetics. Here, we present an efficient urine electrolysis system for hydrogen production, using cost-free urine as feedstock. Our system leverages a discovered Cl-mediated urea oxidation mechanism on Pt catalysts, where adsorbed Cl directly couple with urea to form N-chlorourea intermediates, which are then converted into N2 via intermolecular N–N coupling. This rapid mediated-oxidation process notably improves the activity and stability of urine electrolysis while avoiding Cl-induced corrosion, enabling over 200 hours of operation at reduced voltages. Accordingly, a notable reduction in the electricity consumption is achieved during urine electrolysis (4.05 kWh Nm−3) at 300 mA cm−2 in practical electrolyser for hydrogen production, outperforming the traditional urea (5.62 kWh Nm−3) and water (4.70–5.00 kWh Nm−3) electrolysis.

Advancing robust all-weather desalination: a critical review of emerging photothermal evaporators and hybrid systems

All-weather solar-driven desalination systems, integrating photothermal evaporators with hybrid technologies, present a sustainable, cost-effective, and high-efficiency strategy for freshwater production. Despite significant advancements, previous reviews have predominantly focused on daytime evaporation, neglecting the broader scope of all-weather seawater evaporation. This review provides a comprehensive examination of the current status of all-weather seawater evaporators and their hybrid systems. Initially, the review details the system’s composition and operating principles, as well as the design criteria for high-performance evaporators. It then goes over various common photothermal conversion materials for seawater desalination, with a particular emphasis on those materials tailored for all-weather applications. It also offers an in-depth overview to the developed photothermal hybrid systems for all-weather seawater evaporation, including their working principles, the efficiency of evaporation across the day-night cycle, and their practical applications. Lastly, the existing challenges and potential research opportunities are thoroughly discussed.

Effect of hydrogen leakage on the life cycle climate impacts of hydrogen supply chains

Hydrogen is of interest for decarbonizing hard-to-abate sectors because it does not produce carbon dioxide when combusted. However, hydrogen has indirect warming effects. Here we conducted a life cycle assessment of electrolysis and steam methane reforming to assess their emissions while considering hydrogen’s indirect warming effects. We find that the primary factors influencing life cycle climate impacts are the production method and related feedstock emissions rather than the hydrogen leakage and indirect warming potential. A comparison between fossil fuel-based and hydrogen-based steel production and heavy-duty transportation showed a reduction in emissions of 800 to more than 1400 kg carbon dioxide equivalent per tonne of steel and 0.1 to 0.17 kg carbon dioxide equivalent per tonne-km of cargo. While any hydrogen production pathway reduces greenhouse gas emissions for steel, this is not the case for heavy-duty transportation. Therefore, we recommend a sector-specific approach in prioritizing application areas for hydrogen.

Genomic and transcriptomic insights into complex virus–prokaryote interactions in marine biofilms

Marine biofilms are complex communities of microorganisms that play a crucial ecological role in oceans. Although prokaryotes are the dominant members of these biofilms, little is known about their interactions with viruses. By analysing publicly available and newly sequenced metagenomic data, we identified 2446 virus–prokaryote connections in 84 marine biofilms. Most of these connections were between the bacteriophages in the Uroviricota phylum and the bacteria of Proteobacteria, Cyanobacteria and Bacteroidota. The network of virus–host pairs is complex; a single virus can infect multiple prokaryotic populations or a single prokaryote is susceptible to several viral populations. Analysis of genomes of paired prokaryotes and viruses revealed the presence of 425 putative auxiliary metabolic genes (AMGs), 239 viral genes related to restriction–modification (RM) systems and 38,538 prokaryotic anti-viral defence-related genes involved in 15 defence systems. Transcriptomic evidence from newly established biofilms revealed the expression of viral genes, including AMGs and RM, and prokaryotic defence systems, indicating the active interplay between viruses and prokaryotes. A comparison between biofilms and seawater showed that biofilm prokaryotes have more abundant defence genes than seawater prokaryotes, and the defence gene composition differs between biofilms and the surrounding seawater. Overall, our study unveiled active viruses in natural biofilms and their complex interplay with prokaryotes, which may result in the blooming of defence strategists in biofilms. The detachment of bloomed defence strategists may reduce the infectivity of viruses in seawater and result in the emergence of a novel role of marine biofilms.

Solar-driven interfacial evaporation technologies for food, energy and water

Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.

Responses

Your email address will not be published. Required fields are marked *