Related Articles
The comprehensive SARS-CoV-2 ‘hijackome’ knowledge base
The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral–host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
Cellular dsRNA interactome captured by K1 antibody reveals the regulatory map of exogenous RNA sensing
RNA-binding proteins (RBPs) provide a critical post-transcriptional regulatory layer in determining RNA fate. Currently, UV crosslinking followed by oligo-dT pull-down is the gold standard in identifying the RBP repertoire of poly-adenylated RNAs, but such method is ineffective in capturing RBPs that recognize double-stranded RNAs (dsRNAs). Here, we utilize anti-dsRNA K1 antibody immunoprecipitation followed by quantitative mass spectrometry to comprehensively identify RBPs bound to cellular dsRNAs without external stimulus. Notably, our dsRNA interactome contains proteins involved in sensing N6-methyladenosine RNAs and stress granule components. We further perform targeted CRISPR-Cas9 knockout functional screening and discover proteins that can regulate the interferon (IFN) response during exogenous RNA sensing. Interestingly, most dsRBPs promote IFN-β secretion in response to dsRNA stimulation and act as antiviral factors during HCoV-OC43 infection. Our dsRNA interactome capture provides an unbiased and comprehensive characterization of putative dsRBPs and will facilitate our understanding of dsRNA sensing in physiological and pathological contexts.
Anionic lipids direct efficient microfluidic encapsulation of stable and functionally active proteins in lipid nanoparticles
Because proteins do not efficiently pass through the plasma membrane, protein therapeutics are limited to target ligands located at the cell surface or in serum. Lipid nanoparticles can facilitate delivery of polar molecules across a membrane. We hypothesized that because most proteins are amphoteric ionizable polycations, proteins would associate with anionic lipids, enabling microfluidic chip assembly of stable EP-LNPs (Encapsulated Proteins in Lipid NanoParticles). Here, by employing anionic lipids we were able to efficiently load proteins into EP-LNPs at protein:lipid w:w ratios of 1:20. Several proteins with diverse molecular weights and isoelectric points were encapsulated at efficiencies of 70 75%–90% and remained packaged for several months. Proteins packaged in EP-LNPs efficiently entered mammalian cells and fungal cells with cell walls. The proteins delivered intracellularly were functional. EP-LNPs technology should improve cellular delivery of medicinal antibodies, enzymes, peptide antimetabolites, and dominant negative proteins, opening new fields of protein therapeutics
Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer’s disease
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer’s disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
LolA and LolB are conserved in Bacteroidota and are crucial for gliding motility and Type IX secretion
Lipoproteins are key outer membrane (OM) components in Gram-negative bacteria, essential for functions like membrane biogenesis and virulence. Bacteroidota, a diverse and widespread phylum, produce numerous OM lipoproteins that play vital roles in nutrient acquisition, Type IX secretion system (T9SS), and gliding motility. In Escherichia coli, lipoprotein transport to the OM is mediated by the Lol system, where LolA shuttles lipoproteins to LolB, which anchors them in the OM. However, LolB homologs were previously thought to be limited to γ- and β-proteobacteria. This study uncovers the presence of LolB in Bacteroidota and demonstrates that multiple LolA and LolB proteins co-exist in various species. Specifically, in Flavobacterium johnsoniae, LolA1 and LolB1 transport gliding motility and T9SS lipoproteins to the OM. Notably, these proteins are not interchangeable with their E. coli counterparts, indicating functional specialization. Some lipoproteins still localize to the OM in the absence of LolA and LolB, suggesting the existence of alternative transport pathways in Bacteroidota. This points to a more complex lipoprotein transport system in Bacteroidota compared to other Gram-negative bacteria. These findings reveal previously unrecognized lipoprotein transport mechanisms in Bacteroidota and suggest that this phylum has evolved unique strategies to manage the essential task of lipoprotein localization.
Responses