Related Articles

Professional demand analysis for teaching Chinese to speakers of other languages: a text mining approach on internet recruitment platforms

The rapid development of international education in China highlights the growing importance of employment analysis in Teaching Chinese to Speakers of Other Languages (TCSOL). This study explores the enterprise demands for TCSOL professionals using text mining techniques to analyze recruitment data collected from four major platforms: Boss Zhipin, Zhaopin.com, 51job.com, and Liepin.com. Combining descriptive statistics, LDA topic modeling, BERT-BiLSTM-CRF-based named entity recognition, and co-occurrence network analysis were used. Results show that there is a high demand for TCSOL professionals, especially for small-scale enterprises located in first-tier cities such as Beijing, Shanghai, Guangzhou, and Shenzhen. Employers tend to favor candidates with at least a bachelor’s degree and 1–3 years of work experience. The topic model highlighted three central themes in job descriptions, emphasizing a shift toward a more diverse skill set. Named entity recognition identified essential attributes such as “communication ability”, “teaching experience”, “bachelor’s degree or above” and “responsibility” as core recruitment requirements. The co-occurrence network analysis revealed the importance of “teaching” and “priority” as core skill nodes. Time series analysis showed seasonal fluctuations in recruitment demand, peaking during spring recruitment and graduation periods. A hierarchical model of talent demand and development in TCSOL is proposed, integrating the perspectives of employers, job seekers, educators, and policymakers. This study provides valuable insights for aspiring TCSOL professionals, offering guidance to better align talent training with market needs and improve employment prospects.

Cytoplasmic flow is a cell size sensor that scales anaphase

During early embryogenesis, fast mitotic cycles without interphase lead to a decrease in cell size, while scaling mechanisms must keep cellular structures proportional to cell size. For instance, as cells become smaller, if the position of nuclear envelope reformation (NER) did not adapt, NER would have to occur beyond the cell boundary. Here we found that NER position in anaphase scales with cell size via changes in chromosome motility, mediated by cytoplasmic flows that themselves scale with cell size. Flows are a consequence of friction between viscous cytoplasm and bulky cargo transported by dynein on astral microtubules. As an emerging property, confinement in cells of different sizes yields scaling of cytoplasmic flows. Thus, flows behave like a cell geometry sensor: astral microtubules approach the boundary causing flow velocity changes, which then affect the velocity of chromosome separation, thus scaling NER.

Integrated proteogenomic characterization of ampullary adenocarcinoma

Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC), among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion. Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3 (DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4+ T-cell infiltration cluster), are associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.

CeDaD—a novel assay for simultaneous tracking of cell death and division in a single population

The cell division cycle and the various forms of programmed cell death are interconnected. A prominent example is the tumor suppressor p53, which not only induces apoptosis but also plays an important role in the arrest of the cell cycle. Consequently, simultaneous analysis of cell division and cell death is frequently of significant interest in cell biology research. Traditionally, these processes require distinct assays, making concurrent analysis challenging. To address this, we present a novel combined assay, called CeDaD assay—Cell Death and Division assay—which allows for the simultaneous quantification of cell division and cell death within a single-cell population. This assay utilizes a straightforward flow cytometric approach, combining a staining based on carboxyfluorescein succinimidyl ester (CFSE) to monitor cell division with an annexin V-derived staining to assess the extent of cell death.

The comprehensive SARS-CoV-2 ‘hijackome’ knowledge base

The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral–host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.

Responses

Your email address will not be published. Required fields are marked *