Related Articles

A first-in-human study of quantitative ultrasound to assess transplant kidney fibrosis

Kidney transplantation is the optimal treatment for renal failure. In the United States, a biopsy at the time of organ procurement is often used to assess kidney quality to decide whether it should be used for transplant. This assessment is focused on renal fibrotic burden, because fibrosis is an important measure of irreversible kidney injury. Unfortunately, biopsy at the time of transplant is plagued by problems, including bleeding risk, inaccuracies introduced by sampling bias and rapid sample preparation, and the need for round-the-clock pathology expertise. We developed a quantitative algorithm, called renal H-scan, that can be added to standard ultrasound workflows to quickly and noninvasively measure renal fibrotic burden in preclinical animal models and human transplant kidneys. Furthermore, we provide evidence that biopsy-based fibrosis estimates, because of their highly localized nature, are inaccurate measures of whole-kidney fibrotic burden and do not associate with kidney function post-transplant. In contrast, we show that whole-kidney H-scan fibrosis estimates associate closely with post-transplant renal function. Taken together, our data suggest that the addition of H-scan to standard ultrasound workflows could provide a safe, rapid and easy-to-perform method for accurate quantification of transplant kidney fibrotic burden, and thus better prediction of post-transplant renal outcomes.

Evolving adeno-associated viruses for gene transfer to the kidney via cross-species cycling of capsid libraries

The difficulty of delivering genes to the kidney has limited the translation of genetic medicines, particularly for the more than 10% of the global population with chronic kidney disease. Here we show that new variants of adeno-associated viruses (AAVs) displaying robust and widespread transduction in the kidneys of mice, pigs and non-human-primates can be obtained by evolving capsid libraries via cross-species cycling in different kidney models. Specifically, the new variants, AAV.k13 and AAV.k20, were enriched from the libraries following sequential intravenous cycling through mouse and pig kidneys, ex vivo cycling in human organoid cultures, and ex vivo machine perfusion in isolated kidneys from rhesus macaques. The two variants transduced murine kidneys following intravenous administration, with selective tropism for proximal tubules, and led to markedly higher transgene expression than parental AAV9 vectors in proximal tubule epithelial cells within human organoid cultures and in autotransplanted pig kidneys. Following ureteral delivery, AAV.k20 efficiently transduced kidneys in pigs and macaques. The AAV.k13 and AAV.k20 variants are promising vectors for therapeutic gene-transfer applications in kidney diseases and transplantation.

ACOT12, a novel factor in the pathogenesis of kidney fibrosis, modulates ACBD5

Lipid metabolism, particularly fatty acid oxidation dysfunction, is a major driver of renal fibrosis. However, the detailed regulatory mechanisms underlying this process remain unclear. Here we demonstrated that acyl-CoA thioesterase 12 (Acot12), an enzyme involved in the hydrolysis of acyl-CoA thioesters into free fatty acids and CoA, is a key regulator of lipid metabolism in fibrotic kidneys. A significantly decreased level of ACOT12 was observed in kidney samples from human patients with chronic kidney disease as well as in samples from mice with kidney injuries. Acot12 deficiency induces lipid accumulation and fibrosis in mice subjected to unilateral ureteral obstruction (UUO). Fenofibrate administration does not reduce renal fibrosis in Acot12−/− mice with UUO. Moreover, the restoration of peroxisome proliferator-activated receptor α (PPARα) in Acot12−/−Pparα−/− kidneys with UUO exacerbated lipid accumulation and renal fibrosis, whereas the restoration of Acot12 in Acot12−/− Pparα−/− kidneys with UUO significantly reduced lipid accumulation and renal fibrosis, suggesting that, mechanistically, Acot12 deficiency exacerbates renal fibrosis independently of PPARα. In Acot12−/− kidneys with UUO, a reduction in the selective autophagic degradation of peroxisomes and pexophagy with a decreased level of ACBD5 was observed. In conclusion, our study demonstrates the functional role and mechanistic details of Acot12 in the progression of renal fibrosis, provides a preclinical rationale for regulating Acot12 expression and presents a novel means of preventing renal fibrosis.

Optimising the mainstreaming of renal genomics: Complementing empirical and theoretical strategies for implementation

To identify and develop complementary implementation strategies that support nephrologists in mainstreaming renal genomic testing. Interviews were conducted with individuals nominated as ‘genomics champions’ and ‘embedded genomics experts’ as part of a mainstreaming project to identify initial barriers and investigate empirical strategies for delivering the project at initial stage. Data were mapped onto implementation science framework to identify complementary theoretical strategies. Interviews with 14 genomics champions and embedded genomics experts (genetic counsellors, nephrologists, renal nurses), identified 34 barriers to incorporating genomic testing into routine care, e.g., lack of long-term multidisciplinary team support and role clarity. In total, 25 empirical implementation strategies were identified such as creating new clinical teams. Using the Consolidated Framework for Implementation Research, 10 complementary theoretical implementation strategies were identified. Our study presents a novel approach complementing empirical strategies with theoretical strategies to support nephrologists in incorporating genomic testing into routine practice. Complementary strategies can potentially address barriers and inform future studies when mainstreaming renal genomics. This process underscored the need for integrating collaborative efforts among health professionals, patients, implementation scientists and the health system to overcome identified challenges to mainstream genomic testing. Future research should explore the applicability of these strategies to support mainstreaming genomic testing in different clinical settings.

Trust in scientists and their role in society across 68 countries

Science is crucial for evidence-based decision-making. Public trust in scientists can help decision makers act on the basis of the best available evidence, especially during crises. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists. We interrogated these concerns with a preregistered 68-country survey of 71,922 respondents and found that in most countries, most people trust scientists and agree that scientists should engage more in society and policymaking. We found variations between and within countries, which we explain with individual- and country-level variables, including political orientation. While there is no widespread lack of trust in scientists, we cannot discount the concern that lack of trust in scientists by even a small minority may affect considerations of scientific evidence in policymaking. These findings have implications for scientists and policymakers seeking to maintain and increase trust in scientists.

Responses

Your email address will not be published. Required fields are marked *