Related Articles

Evolving adeno-associated viruses for gene transfer to the kidney via cross-species cycling of capsid libraries

The difficulty of delivering genes to the kidney has limited the translation of genetic medicines, particularly for the more than 10% of the global population with chronic kidney disease. Here we show that new variants of adeno-associated viruses (AAVs) displaying robust and widespread transduction in the kidneys of mice, pigs and non-human-primates can be obtained by evolving capsid libraries via cross-species cycling in different kidney models. Specifically, the new variants, AAV.k13 and AAV.k20, were enriched from the libraries following sequential intravenous cycling through mouse and pig kidneys, ex vivo cycling in human organoid cultures, and ex vivo machine perfusion in isolated kidneys from rhesus macaques. The two variants transduced murine kidneys following intravenous administration, with selective tropism for proximal tubules, and led to markedly higher transgene expression than parental AAV9 vectors in proximal tubule epithelial cells within human organoid cultures and in autotransplanted pig kidneys. Following ureteral delivery, AAV.k20 efficiently transduced kidneys in pigs and macaques. The AAV.k13 and AAV.k20 variants are promising vectors for therapeutic gene-transfer applications in kidney diseases and transplantation.

A first-in-human study of quantitative ultrasound to assess transplant kidney fibrosis

Kidney transplantation is the optimal treatment for renal failure. In the United States, a biopsy at the time of organ procurement is often used to assess kidney quality to decide whether it should be used for transplant. This assessment is focused on renal fibrotic burden, because fibrosis is an important measure of irreversible kidney injury. Unfortunately, biopsy at the time of transplant is plagued by problems, including bleeding risk, inaccuracies introduced by sampling bias and rapid sample preparation, and the need for round-the-clock pathology expertise. We developed a quantitative algorithm, called renal H-scan, that can be added to standard ultrasound workflows to quickly and noninvasively measure renal fibrotic burden in preclinical animal models and human transplant kidneys. Furthermore, we provide evidence that biopsy-based fibrosis estimates, because of their highly localized nature, are inaccurate measures of whole-kidney fibrotic burden and do not associate with kidney function post-transplant. In contrast, we show that whole-kidney H-scan fibrosis estimates associate closely with post-transplant renal function. Taken together, our data suggest that the addition of H-scan to standard ultrasound workflows could provide a safe, rapid and easy-to-perform method for accurate quantification of transplant kidney fibrotic burden, and thus better prediction of post-transplant renal outcomes.

ACOT12, a novel factor in the pathogenesis of kidney fibrosis, modulates ACBD5

Lipid metabolism, particularly fatty acid oxidation dysfunction, is a major driver of renal fibrosis. However, the detailed regulatory mechanisms underlying this process remain unclear. Here we demonstrated that acyl-CoA thioesterase 12 (Acot12), an enzyme involved in the hydrolysis of acyl-CoA thioesters into free fatty acids and CoA, is a key regulator of lipid metabolism in fibrotic kidneys. A significantly decreased level of ACOT12 was observed in kidney samples from human patients with chronic kidney disease as well as in samples from mice with kidney injuries. Acot12 deficiency induces lipid accumulation and fibrosis in mice subjected to unilateral ureteral obstruction (UUO). Fenofibrate administration does not reduce renal fibrosis in Acot12−/− mice with UUO. Moreover, the restoration of peroxisome proliferator-activated receptor α (PPARα) in Acot12−/−Pparα−/− kidneys with UUO exacerbated lipid accumulation and renal fibrosis, whereas the restoration of Acot12 in Acot12−/− Pparα−/− kidneys with UUO significantly reduced lipid accumulation and renal fibrosis, suggesting that, mechanistically, Acot12 deficiency exacerbates renal fibrosis independently of PPARα. In Acot12−/− kidneys with UUO, a reduction in the selective autophagic degradation of peroxisomes and pexophagy with a decreased level of ACBD5 was observed. In conclusion, our study demonstrates the functional role and mechanistic details of Acot12 in the progression of renal fibrosis, provides a preclinical rationale for regulating Acot12 expression and presents a novel means of preventing renal fibrosis.

Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain

Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.

Pathogen stress heightens sensorimotor dimensions in the human collective semantic space

Infectious diseases have been major causes of death throughout human history and are assumed to broadly affect human psychology. However, whether and how conceptual processing, an internal world model central to various cognitive processes, adapts to such salient stress variables remains largely unknown. To address this, we conducted three studies examining the relationship between pathogen severity and semantic space, probed through the main neurocognitive semantic dimensions revealed by large-scale text analyses: one cross-cultural study (across 43 countries) and two historical studies (over the past 100 years). Across all three studies, we observed that increasing pathogen severity was associated with an enhancement of the sensory-motor dimension in the collective semantic space. These patterns remained robust after controlling for the effects of sociocultural variables, including economic wealth and societal norms of tightness. These results highlight the universal dynamic mechanisms of collective semantics, such that pathogen stress potentially drives sensorially oriented semantic processing.

Responses

Your email address will not be published. Required fields are marked *