Related Articles
Development of accessible and scalable maize pollen storage technology
The inherent short lifespan of Zea mays (maize, corn) pollen hinders crop improvement and challenges the hybrid seed production required to produce food, fuel, and feed. Decades of scientific effort on maize pollen storage technology have been unable to deliver a widely accessible protocol that works for liters of pollen at a hybrid seed production scale. Here we show how suppressing the pollen cellular respiration rate through refrigeration and optimizing gas exchange within the storage environment are the critical combination of factors for maintaining pollen viability in storage. The common practice of preserving maize pollen by mixing the pollen with talcum powder is critically examined using pollen tube germination testing, electron microscopy of pollen-silk (stigma) interaction, and test pollinations in production environments. These techniques lead to mixing maize pollen collected for storage with anti-clumping carrier compounds, including microcrystalline cellulose. These carriers improve stored pollen flowability during pollination and enable increased seed sets to be obtained from stored pollen. Field testing in maize seed production demonstrates that a wide range of pollen volumes can be stored for up to seven days using low-cost, globally available materials and that stored pollen can achieve seed-set equivalency to fresh pollen.
Differential bone and vessel type formation at superior and dura periosteum during cranial bone defect repair
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide. Our results show that new bone formation along the dura surface is three times greater than that along the superior periosteal surface following injury, regardless of Teriparatide treatment. Targeted deletion of PTH receptor PTH1R via SMA-CreER and Col 1a (2.3)-CreER results in selective reduction of bone formation, suggesting different progenitor cell pools in the adult superior and dura periosteum. Consistently, analyses of microvasculature show higher vessel density and better organized arterial-venous vessel network associated with a 10-fold more osteoblast clusters at dura periosteum as compared to superior periosteum. Intermittent rhPTH treatment further enhances the arterial vessel ratio at dura periosteum and type H vessel formation in cortical bone marrow space. Taken together, our study demonstrates a site-dependent coordinated osteogenic and angiogenic response, which is determined by regional osteogenic progenitor pool as well as the coupling blood vessel network at the site of cranial defect repair.
Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head
Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.
Pancreatic organogenesis mapped through space and time
The spatial organization of cells within a tissue is dictated throughout dynamic developmental processes. We sought to understand whether cells geometrically coordinate with one another throughout development to achieve their organization. The pancreas is a complex cellular organ with a particular spatial organization. Signals from the mesenchyme, neurons, and endothelial cells instruct epithelial cell differentiation during pancreatic development. To understand the cellular diversity and spatial organization of the developing pancreatic niche, we mapped the spatial relationships between single cells over time. We found that four transcriptionally unique subtypes of mesenchyme in the developing pancreas spatially coordinate throughout development, with each subtype at fixed locations in space and time in relation to other cells, including beta cells, vasculature, and epithelial cells. Our work provides insight into the mechanisms of pancreatic development by showing that cells are organized in a space and time manner.
Endothelial senescence induced by PAI-1 promotes endometrial fibrosis
Intrauterine adhesions (IUAs), also known as Asherman’s syndrome (AS), represent a significant cause of uterine infertility for which effective treatment remains elusive. The endometrium’s ability to regenerate cyclically depends heavily on the growth and regression of its blood vessels. However, trauma to the endometrial basal layer can disrupt the subepithelial capillary plexus, impeding regeneration. This damage results in the replacement of native cells with fibroblasts and myofibroblasts, ultimately leading to fibrosis. Endothelial cells (ECs) play a pivotal role in the vascular system, extending beyond their traditional barrier function. Through single-cell sequencing and experimental validation, we discovered that ECs undergo senescence in IUA patients, impairing angiogenesis and fostering stromal cell fibrosis. Further analysis revealed significant interactions between ECs and PAI-1+ stromal cells. PAI-1, derived from stromal cells, promotes EC senescence via the urokinase-type plasminogen activator receptor (uPAR). Notably, prior to fibrosis onset, TGF-β upregulates PAI-1 expression in stromal cells in a SMAD dependent manner. In an IUA mouse model, inhibiting PAI-1 mitigated EC senescence and endometrial fibrosis. Our findings underscore the crucial role of EC senescence in IUA pathogenesis, contributing to vascular reduction and fibrosis. Targeting PAI-1 represents a promising therapeutic strategy to suppress EC senescence and alleviate endometrial fibrosis, offering new insights into the treatment of IUAs.
Responses