Related Articles
Cultural nuances in subtitling the religious discourse marker wallah in Jordanian drama into English
This study examines the strategies and challenges of subtitling the religious discourse marker والله wallah (by God) in Jordanian Arabic drama on Netflix. Two works, the series Jinn (2019) and the film Theeb (2014), are chosen as the corpus of the data. The study analyses the pragmatic functions of the religious marker wallah, which Arabs usually use to swear to God in different contexts and examines its English subtitles. The theoretical framework partially employs Vinay and Darbelnet’s (1995) literal translation and omission strategies and Baker’s (2018) translation approaches, including equivalence and paraphrase. A qualitative analysis is conducted to analyse the functions of occurrences of this marker in its pragmatic context, along with its subtitling into English. The study found that the religious marker is frequently omitted in the subtitles or rendered into various linguistic elements such as speech acts, intensifiers, emphatic expressions, filler words, and sarcastic utterances. wallah was either paraphrased or literally translated in some instances. The study concludes that it is necessary to employ unique techniques to overcome the cultural and linguistic gaps, depending on the function of the religious discourse marker, and to improve the reliability and quality of interpreting religious markers in audiovisual settings.
Multimodal insights: enhancing cultural promotion through analysis of Saudi Arabian audiovisual productions
This research explores the application of Dicerto’s (2018) multimodal pragmatic model in analyzing Arabic audiovisual productions for translation purposes, focusing on enhancing cultural promotion. Employing a qualitative descriptive analysis approach, the study examines samples from Saudi productions that promote tourism, mainly focusing on Saudi coffee and its cultural traditions to enlighten foreign visitors about Saudi culture. The analysis reveals that Dicerto’s model provides a clear framework for achieving semantic fidelity in translation, ensuring that the translated text closely resembles its original in interpretative richness. Central to this framework is the principle of optimal relevance, wherein the sender intends the message to be maximally pertinent to the audience, thereby justifying the recipient’s cognitive effort in processing it and facilitating access to the sender’s intentions. This research sheds light on the effectiveness of applying multimodal analysis models in cultural promotion efforts through audiovisual productions, particularly in Saudi Arabian tourism promotion.
Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Type 2 immunity in allergic diseases
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Engineering bone/cartilage organoids: strategy, progress, and application
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Responses