Related Articles
GluN2B-mediated regulation of silent synapses for receptor specification and addiction memory
Psychostimulants, including cocaine, elicit stereotyped, addictive behaviors. The reemergence of silent synapses containing only NMDA-type glutamate receptors is a critical mediator of addiction memory and seeking behaviors. Despite the predominant abundance of GluN2B-containing NMDA-type glutamate receptors in silent synapses, their operational mechanisms are not fully understood. Here, using conditional depletion/deletion of GluN2B in D1-expressing accumbal medium spiny neurons, we examined the synaptic and behavioral actions that silent synapses incur after repeated exposure to cocaine. GluN2B ablation reduces the proportion of silent synapses, but some of them can persist by substitution with GluN2C, which drives the aberrantly facilitated synaptic incorporation of calcium-impermeable AMPA-type glutamate receptors (AMPARs). The resulting precocious maturation of silent synapses impairs addiction memory but increases locomotor activity, both of which can be normalized by the blockade of calcium-impermeable AMPAR trafficking. Collectively, GluN2B supports the competence of cocaine-induced silent synapses to specify the subunit composition of AMPARs and thereby the expression of addiction memory and related behaviors.
Latent circuit inference from heterogeneous neural responses during cognitive tasks
Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity and task variables leave unknown how heterogeneous responses arise from connectivity to drive behavior. We develop the latent circuit model, a dimensionality reduction approach in which task variables interact via low-dimensional recurrent connectivity to produce behavioral output. We apply the latent circuit inference to recurrent neural networks trained to perform a context-dependent decision-making task and find a suppression mechanism in which contextual representations inhibit irrelevant sensory responses. We validate this mechanism by confirming the behavioral effects of patterned connectivity perturbations predicted by the latent circuit model. We find similar suppression of irrelevant sensory responses in the prefrontal cortex of monkeys performing the same task. We show that incorporating causal interactions among task variables is critical for identifying behaviorally relevant computations from neural response data.
Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization
Microbiota promotes or inhibits the pathogenesis of a range of immune-mediated disorders. Although recent studies have elucidated the role of gut microbiota in ocular disease, the effect of ocular microbiota remains unclear. Herein, we explored the role of ocular commensal bacteria in non-infectious corneal inflammation and angiogenesis in a mouse model of suture-induced corneal neovascularization. Results revealed that the ocular surface harbored a microbial community consisting mainly of Actinobacteria, Firmicutes and Proteobacteria. Elimination of the ocular commensal bacteria by oral broad-spectrum antibiotics or topical fluoroquinolone significantly suppressed corneal inflammation and neovascularization. Disease amelioration was associated with reduced numbers of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells, not Foxp3+ regulatory T cells, in the spleen, blood, and draining lymph nodes. Therapeutic concentrations of fluoroquinolone, however, did not directly affect immune cells or vascular endothelial cells. In addition, data from a clinical study showed that antibiotic treatment in combination with corticosteroids, as compared with corticosteroid monotherapy, induced faster remission of corneal inflammation and new vessels in pediatric patients with non-infectious marginal keratitis. Altogether, our findings demonstrate a pathogenic role of ocular microbiota in non-infectious inflammatory disorders leading to sight-threatening corneal neovascularization, and suggest a therapeutic potential of targeting commensal microbes in treating ocular inflammation.
Intersect between brain mechanisms of conditioned threat, active avoidance, and reward
Active avoidance is a core behavior for human coping, and its excess is common across psychiatric diseases. The decision to actively avoid a threat is influenced by cost and reward. Yet, threat, avoidance, and reward have been studied in silos. We discuss behavioral and brain circuits of active avoidance and the interactions with fear and threat. In addition, we present a neural toggle switch model enabling fear-to-anxiety transition and approaching reward vs. avoiding harm decision. To fully comprehend how threat, active avoidance, and reward intersect, it is paramount to develop one shared experimental approach across phenomena and behaviors, which will ultimately allow us to better understand human behavior and pathology.
Constructing future behavior in the hippocampal formation through composition and replay
The hippocampus is critical for memory, imagination and constructive reasoning. Recent models have suggested that its neuronal responses can be well explained by state spaces that model the transitions between experiences. Here we use simulations and hippocampal recordings to reconcile these views. We show that if state spaces are constructed compositionally from existing building blocks, or primitives, hippocampal responses can be interpreted as compositional memories, binding these primitives together. Critically, this enables agents to behave optimally in new environments with no new learning, inferring behavior directly from the composition. We predict a role for hippocampal replay in building and consolidating these compositional memories. We test these predictions in two datasets by showing that replay events from newly discovered landmarks induce and strengthen new remote firing fields. When the landmark is moved, replay builds a new firing field at the same vector to the new location. Together, these findings provide a framework for reasoning about compositional memories and demonstrate that such memories are formed in hippocampal replay.
Responses