Related Articles
Frontostriatal regulation of brain circuits contributes to flexible decision making
Deficits in behavioral or cognitive flexibility that are linked to altered activity in both cortical and subcortical brain regions, are often observed across multiple neuropsychiatric disorders. The medial prefrontal cortex (mPFC)-nucleus accumbens (NAc) pathway in rats plays a critical role in flexible control of behavior. However, the modulation of this pathway on activity and functional connectivity with the rest of the brain remains unclear. In this study, we first confirmed the role of the mPFC-NAc pathway in behavioral flexibility using a set-shifting task in rats and then evaluated the causal effects of mPFC-NAc activation induced by chemogenetic stimulation of the terminal axons of the NAc with DREADD expression on whole-brain activity and functional connectivity measured by functional MRI. mPFC-NAc activation improved performance on the set-shifting task by reducing perseverative errors. Additionally, stimulation of this pathway increased activity in a set of brain regions within the basal ganglia-thalamus-cortical loop network including NAc, thalamus, hypothalamus and various connected cortical regions, while also decreased functional connectivity strength of NAc-mPFC, NAc-secondary motor cortex (M2), and various cortical circuits. Moreover, performance on the set-shifting task was related to the functional connectivity strength of the above frontostriatal and cortical circuits. These findings provide insights into the link between specific frontostriatal circuits on decision making flexibility, which may inform potential future interventions for behavioral flexibility deficits.
GluN2B-mediated regulation of silent synapses for receptor specification and addiction memory
Psychostimulants, including cocaine, elicit stereotyped, addictive behaviors. The reemergence of silent synapses containing only NMDA-type glutamate receptors is a critical mediator of addiction memory and seeking behaviors. Despite the predominant abundance of GluN2B-containing NMDA-type glutamate receptors in silent synapses, their operational mechanisms are not fully understood. Here, using conditional depletion/deletion of GluN2B in D1-expressing accumbal medium spiny neurons, we examined the synaptic and behavioral actions that silent synapses incur after repeated exposure to cocaine. GluN2B ablation reduces the proportion of silent synapses, but some of them can persist by substitution with GluN2C, which drives the aberrantly facilitated synaptic incorporation of calcium-impermeable AMPA-type glutamate receptors (AMPARs). The resulting precocious maturation of silent synapses impairs addiction memory but increases locomotor activity, both of which can be normalized by the blockade of calcium-impermeable AMPAR trafficking. Collectively, GluN2B supports the competence of cocaine-induced silent synapses to specify the subunit composition of AMPARs and thereby the expression of addiction memory and related behaviors.
Latent circuit inference from heterogeneous neural responses during cognitive tasks
Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity and task variables leave unknown how heterogeneous responses arise from connectivity to drive behavior. We develop the latent circuit model, a dimensionality reduction approach in which task variables interact via low-dimensional recurrent connectivity to produce behavioral output. We apply the latent circuit inference to recurrent neural networks trained to perform a context-dependent decision-making task and find a suppression mechanism in which contextual representations inhibit irrelevant sensory responses. We validate this mechanism by confirming the behavioral effects of patterned connectivity perturbations predicted by the latent circuit model. We find similar suppression of irrelevant sensory responses in the prefrontal cortex of monkeys performing the same task. We show that incorporating causal interactions among task variables is critical for identifying behaviorally relevant computations from neural response data.
Paternal heroin self-administration in rats increases drug-seeking behavior in male offspring via miR-19b downregulation in the nucleus accumbens
Accumulating evidence indicates that drug addiction may lead to adaptive behavioral changes in offspring, potentially due to epigenetic modifications in parental germline. However, the underlying mechanisms remain inadequately understood. In this study, we show that paternal heroin self-administration (SA) increased heroin-seeking behavior in the F1 generation, when compared with offspring sired by yoke-infused control males, indicating cross-generational impact of paternal voluntary heroin seeking behavior. Notably, the increase of heroin seeking behavior in offspring was replicated by zygotic microinjection of sperm RNAs derived from sperm of heroin-SA-experienced rats. Analysis of non-coding RNAs in spermatozoa revealed coordinated changes in miRNA content between the nucleus accumbens and spermatozoa. We validated that restoration of miR-19b downregulation in sperm RNA from self-administration-experienced rats, in parallel with its overexpression in the nucleus accumbens of F1 offspring sired by heroin-SA-experienced fathers, reversed the increased heroin SA observed in these F1 offspring. Taken together, our findings suggest in rats that paternal heroin self-administration induces epigenetic changes in both brain and sperm miRNA, with miR-19b downregulation playing a critical role in mediating the epigenetic inheritance of increased heroin self-administration behavior in the F1 generation.
Brain structural correlates of an impending initial major depressive episode
Neuroimaging research has yet to elucidate whether reported gray matter volume (GMV) alterations in major depressive disorder (MDD) exist already before the onset of the first episode. Recruitment of presently healthy individuals with a subsequent transition to MDD (converters) is extremely challenging but crucial to gain insights into neurobiological vulnerability. Hence, we compared converters to patients with MDD and sustained healthy controls (HC) to distinguish pre-existing neurobiological markers from those emerging later in the course of depression. Combining two clinical cohorts (n = 1709), voxel-based morphometry was utilized to analyze GMV of n = 45 converters, n = 748 patients with MDD, and n = 916 HC in a region-of-interest approach and exploratory whole-brain. By contrasting the subgroups and considering both remission state and reported recurrence at a 2-year clinical follow-up, we stepwise disentangled effects of (1) vulnerability, (2) the acute depressive state, and (3) an initial vs. a recurrent episode. Analyses revealed higher amygdala GMV in converters relative to HC (ptfce-FWE = 0.037, d = 0.447) and patients (ptfce-FWE = 0.005, d = 0.508), remaining significant when compared to remitted patients with imminent recurrence. Lower GMV in the dorsolateral prefrontal cortex (ptfce-FWE < 0.001, d = 0.188) and insula (ptfce-FWE = 0.010, d = 0.186) emerged in patients relative to HC but not to converters, driven by patients with acute MDD. By examining one of the largest available converter samples in psychiatric neuroimaging, this study allowed a first determination of neural markers for an impending initial depressive episode. Our findings suggest a temporary vulnerability, which in combination with other common risk factors might facilitate prediction and in turn improve prevention of depression.
Responses