Related Articles

Empowering music education with technology: a bibliometric perspective

As technology becomes an integral part of educational content and methodology, its research significance continues to grow, particularly in the relationship between music and technology. The primary aim of this study is to quantify and analyze academic research outcomes concerning the use of technology in music education. The selected sample is drawn from the WoS core database, encompassing academic achievements from 1991 to 2024. Various bibliometric software tools and three major laws were employed for the analysis, examining publication distribution, relevant journals and authors, research countries, keywords, and current and future research themes. Presently, research is mainly focused on four themes: technology integration and interaction, adaptive learning and creative teaching methods, educational frameworks and performance, and the diverse inclusion of children and adolescents. Looking ahead, the two frontier hot topics in this field are remote and online education, and innovation in higher education and educational models. This study aims to contribute to the comprehensive bibliometric analysis literature on the use of technology in music education.

Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors

Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell’s law. However, quantum-mechanical light-matter interaction, wherein photons coherently excite distinct quantum pathways, remains poorly understood. Here, we report on quantum interference between light-induced quantum pathways through the orbital quantum levels and spin continuum. The quantum interference immediately breaks the symmetry of the hexagonal antiferromagnetic semiconductor FePS3. Below the Néel temperature, we observe the emergence of birefringence and linear dichroism, namely, quantum anisotropy due to quantum interference, which is further enhanced by the thickness effect. We explain the direct relevance of the quantum anisotropy to a quantum phase transition by spontaneous symmetry breaking in Mexican hat potential. Our findings suggest material modulation via selective quantum pathways through quantum light-matter interaction.

Contrasting drivers of abundant phage and prokaryotic communities revealed in diverse coastal ecosystems

Phages (viruses of bacteria and archaea) are a ubiquitous top-down control on microbial communities by selectively infecting and killing cells. As obligate parasites, phages are inherently linked to processes that impact their hosts’ distribution and physiology, but phages can also be impacted by external, environmental factors, such as UV radiation degrading their virions. To better understand these complex links of phages to their hosts and the environment, we leverage the unique ecological context of the Isthmus of Panama, which narrowly disconnects the productive Tropical Eastern Pacific (EP) and nutrient-poor Tropical Western Atlantic (WA) provinces. We could thus compare patterns of phage and prokaryotic communities at both global scales (between oceans) and local-scales (between habitats within an ocean). Although both phage and prokaryotic communities differed sharply between the oceans, phage community composition did not significantly differ between mangroves and reefs of the WA, while prokaryotic communities were distinct. These results suggest phages are more shaped by dispersal processes than local conditions regardless of spatial scale, while prokaryotes tend to be shaped by local conditions at smaller spatial scales. Collectively, we provide a framework for addressing the co-variability between phages and prokaryotes in marine systems and identifying factors that drive consistent versus disparate trends in community shifts, essential to informing models of biogeochemical cycles that include these interactions.

Dynamic thermalization on noisy quantum hardware

Emulating thermal observables on a digital quantum computer is essential for quantum simulation of many-body physics. However, thermalization typically requires a large system size due to incorporating a thermal bath, whilst limited resources of near-term digital quantum processors allow for simulating relatively small systems. We show that thermal observables and fluctuations may be obtained for a small closed system without a thermal bath. Thermal observables occur upon classically averaging quantum mechanical observables over randomized variants of their time evolution that run independently on a digital quantum processor. Using an IBM quantum computer, we experimentally find thermal occupation probabilities with finite positive and negative temperatures defined by the initial state’s energy. Averaging over random evolutions facilitates error mitigation, with the noise contributing to the temperature in the simulated observables. This result fosters probing the dynamical emergence of equilibrium properties of matter at finite temperatures on noisy intermediate-scale quantum hardware.

Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing

Entanglement is a fundamental resource for various optical quantum information processing (QIP) applications. To achieve high-speed QIP systems, entanglement should be encoded in short wavepackets. Here we report the real-time observation of ultrafast optical Einstein–Podolsky–Rosen correlation at a picosecond timescale in a continuous-wave system. Optical phase-sensitive amplification using a 6-THz-bandwidth waveguide-based optical parametric amplifier enhances the effective efficiency of 70-GHz-bandwidth homodyne detectors, mainly used in 5G telecommunication, enabling its use in real-time quantum state measurement. Although power measurement using frequency scanning, such as an optical spectrum analyser, is not performed in real time, our observation is demonstrated through the real-time amplitude measurement and can be directly used in QIP applications. The observed Einstein–Podolsky–Rosen states show quantum correlation of 4.5 dB below the shot-noise level encoded in wavepackets with 40 ps period, equivalent to 25 GHz repetition—103 times faster than previous entanglement observation in continuous-wave systems. The quantum correlation of 4.5 dB is already sufficient for several QIP applications, and our system can be readily extended to large-scale entanglement. Moreover, our scheme has high compatibility with optical communication technology such as wavelength-division multiplexing, and femtosecond-timescale observation is also feasible. Our demonstration is a paradigm shift in accelerating accessible quantum correlation—the foundational resource of all quantum applications—from the nanosecond to picosecond timescales, enabling ultrafast optical QIP.

Responses

Your email address will not be published. Required fields are marked *