Related Articles
On-chip solar power source for self-powered smart microsensors in bulk CMOS process
Enhancing the photoelectric conversion efficiency of on-chip solar cells is crucial for advancing solar energy harvesting in self-powered smart microsensors for Internet of Things applications. Here we show that adopting a center electrode (CE) layout instead of a ring electrode (RE) effectively reduces the shadowing effect of surface electrodes. Using a standard 0.18 μm CMOS process, we fabricated a 0.01 mm² segmented triple-well on-chip solar cell with CEs and highly doped interconnections. Measurements demonstrate a photoelectric conversion efficiency of 25.79% under solar simulator illumination, a 17.49% improvement over conventional designs. This on-chip solar cell is used for on-chip energy harvesting, achieving a maximum end-to-end conversion efficiency of 10.20%, referring to the overall efficiency from incident light power to load power output. The proposed energy harvesting system reliably provides a stable 1 V output to the load, even under varying illumination and load conditions.
Fully automated sample to result SIMPLE RPA microfluidic chip towards in ovo sexing application
Several European countries have implemented legislations to eliminate day-old male chicks killing. Although embryo sexing (in ovo sexing) is the most promising alternative, no current solution can handle all egg colors with >98% sexing accuracy, low cost and minimal embryo disturbance before day 13 of incubation and processing >20,000 eggs/hour. Recombinase polymerase amplification (RPA) presents a promising alternative to PCR that can be integrated into microfluidic platforms. In this work, we developed fully autonomous microfluidic cartridge (SIMPLE-RPA chip) for female chick-specific synthetic HINTW gene detection in 30 min at 37.7 °C inside an egg incubator. We first optimized off-chip RPA, allowing for highly sensitive DNA detection (1.6 × 10–5 ng/µL). The SIMPLE-RPA chip was developed to automate the RPA bioassay on-chip, reducing user errors, and contamination risks and maintaining the off-chip LOD while offering low price, small footprint, upscaling compatibility, and easy transfer to other point-of-care applications.
Composite vortex air laser
Structured air laser generated through establishing high-gain air media in a cavity-free scheme by intense ultrashort pulses is promising for optical manipulation and quantum communication at standoff distances. However, the mechanism how the orbital angular momentum (OAM) information can be entangled into strong-field-induced gain media is still controversial, making manipulation of the topological charges of structured air laser remain a challenge. Here, we report the realization of a composite vortex N2+ air laser with controllable OAM by manipulating the relative positions, polarization directions, and intensity ratio between a Gaussian-shaped pump and an external vortex seed. Numerical simulations reveal the essential role of the interference between self-seeded Gaussian-shaped and externally-seeded vortex lasing emissions in the topological charge transformation. Our findings not only shed light on the generation mechanism of vortex air lasers, but also open up avenues for quantum manipulation of structured light through strong-field laser ionization of molecules remotely.
A gut-on-a-chip incorporating human faecal samples and peristalsis predicts responses to immune checkpoint inhibitors for melanoma
Patient responses to immune checkpoint inhibitors can be influenced by the gastrointestinal microbiome. Mouse models can be used to study microbiome–host crosstalk, yet their utility is constrained by substantial anatomical, functional, immunological and microbial differences between mice and humans. Here we show that a gut-on-a-chip system mimicking the architecture and functionality of the human intestine by including faecal microbiome and peristaltic-like movements recapitulates microbiome–host interactions and predicts responses to immune checkpoint inhibitors in patients with melanoma. The system is composed of a vascular channel seeded with human microvascular endothelial cells and an intestinal channel with intestinal organoids derived from human induced pluripotent stem cells, with the two channels separated by a collagen matrix. By incorporating faecal samples from patients with melanoma into the intestinal channel and by performing multiomic analyses, we uncovered epithelium-specific biomarkers and microbial factors that correlate with clinical outcomes in patients with melanoma and that the microbiome of non-responders has a reduced ability to buffer cellular stress and self-renew. The gut-on-a-chip model may help identify prognostic biomarkers and therapeutic targets.
Advancements in ultrafast photonics: confluence of nonlinear optics and intelligent strategies
Automatic mode-locking techniques, the integration of intelligent technologies with nonlinear optics offers the promise of on-demand intelligent control, potentially overcoming the inherent limitations of traditional ultrafast pulse generation that have predominantly suffered from the instability and suboptimality of open-loop manual tuning. The advancements in intelligent algorithm-driven automatic mode-locking techniques primarily are explored in this review, which also revisits the fundamental principles of nonlinear optical absorption, and examines the evolution and categorization of conventional mode-locking techniques. The convergence of ultrafast pulse nonlinear interactions with intelligent technologies has intricately expanded the scope of ultrafast photonics, unveiling considerable potential for innovation and catalyzing new waves of research breakthroughs in ultrafast photonics and nonlinear optics characters.
Responses