Related Articles
Not all who integrate are academics: zooming in on extra-academic integrative expertise
Solving complex problems requires integrating knowledge and skills from various domains. The importance of cross-domain integration has motivated researchers to study integrative expertise: what knowledge and skills help achieve cross-domain integration? Much of the existing research focuses on the integrative expertise of academic researchers who perform inter- and transdisciplinary research. However, academics are not the only ones facilitating integration. In transdisciplinary research, where academics collaborate with professionals, stakeholders, and policymakers, these extra-academic actors can contribute significantly to cross-domain integration. Moreover, many complex problems are addressed entirely outside of universities. This paper contributes to a broader, more inclusive understanding of integrative expertise by drawing attention to the diversity of extra-academic integrative expertise, providing examples of what this expertise looks like in practice, and reflecting on differences with its academic counterpart. The contributions are based on a case study of integrative expertise in Oosterweel Link, a large urban development project in Antwerp, Belgium.
Empowering music education with technology: a bibliometric perspective
As technology becomes an integral part of educational content and methodology, its research significance continues to grow, particularly in the relationship between music and technology. The primary aim of this study is to quantify and analyze academic research outcomes concerning the use of technology in music education. The selected sample is drawn from the WoS core database, encompassing academic achievements from 1991 to 2024. Various bibliometric software tools and three major laws were employed for the analysis, examining publication distribution, relevant journals and authors, research countries, keywords, and current and future research themes. Presently, research is mainly focused on four themes: technology integration and interaction, adaptive learning and creative teaching methods, educational frameworks and performance, and the diverse inclusion of children and adolescents. Looking ahead, the two frontier hot topics in this field are remote and online education, and innovation in higher education and educational models. This study aims to contribute to the comprehensive bibliometric analysis literature on the use of technology in music education.
User-specified inverse kinematics taught in virtual reality reduce time and effort to hand-guide redundant surgical robots
Medical robots should not collide with close by obstacles during medical procedures, such as lamps, screens, or medical personnel. Redundant robots have more degrees of freedom than needed for moving endoscopic tools during surgery and can be reshaped to avoid obstacles by moving purely in the space of these additional degrees of freedom (null space). Although state-of-the-art robots allow surgeons to hand-guide endoscopic tools, reshaping the robot in null space is not intuitive for surgeons. Here we propose a learned task space control that allows surgeons to intuitively teach preferred robot configurations (shapes) that avoid obstacles using a VR-based planner in simulation. Later during surgery, surgeons control both the endoscopic tool and robot configuration (shape) with one hand. In a user study, we found that learned task space control outperformed state-of-the-art naive task space control in all the measured performance metrics (time, effort, and user-perceived effort). Our solution allowed users to intuitively interact with robots in VR and reshape robots while moving tools in medical and industrial applications.
Visual cognition in multimodal large language models
A chief goal of artificial intelligence is to build machines that think like people. Yet it has been argued that deep neural network architectures fail to accomplish this. Researchers have asserted these models’ limitations in the domains of causal reasoning, intuitive physics and intuitive psychology. Yet recent advancements, namely the rise of large language models, particularly those designed for visual processing, have rekindled interest in the potential to emulate human-like cognitive abilities. This paper evaluates the current state of vision-based large language models in the domains of intuitive physics, causal reasoning and intuitive psychology. Through a series of controlled experiments, we investigate the extent to which these modern models grasp complex physical interactions, causal relationships and intuitive understanding of others’ preferences. Our findings reveal that, while some of these models demonstrate a notable proficiency in processing and interpreting visual data, they still fall short of human capabilities in these areas. Our results emphasize the need for integrating more robust mechanisms for understanding causality, physical dynamics and social cognition into modern-day, vision-based language models, and point out the importance of cognitively inspired benchmarks.
Investigating the role of psychological elements in advancing IT skills among accounting students: insights from Saudi Arabia
Psychological factors are among the multiple influences on people’s daily behavior. The outcomes of various daily activities, ranging from success to failure, are often determined by these psychological aspects. The purpose of this research is to determine how psychological factors influence the skill of accounting students in Saudi Arabia with regard to information technology (IT). In order to achieve the research objectives, a descriptive and explanatory research design incorporating a quantitative approach is utilized. The study’s target population comprises accounting students from government universities in Saudi Arabia. Data collection employed a combination of convenient and snowball sampling strategies, ensuring broader applicability of the findings. A total of 306 accounting students from these universities participated in an online survey. Data analysis is conducted using partial least squares-structural equation modeling (PLS-SEM), and the significance of path coefficients is assessed through bootstrapping tests. Results indicated that motor skills, visual processing, fatigue, and stress positively influence IT skill development in these students. Conversely, ergonomics and cognitive abilities appeared to have no significant effect. The model accounted for approximately 65% of the variance in IT skill development among university students. These insights can guide educational institutions in formulating strategic plans for IT skill development, ensuring students acquire the necessary competencies on campus. Additionally, the findings offer valuable information for government bodies developing standards to foster IT skill growth.
Responses