A lived experience perspective on research dialogues

A lived experience perspective on research dialogues

Related Articles

Chromosomal 3p loss and 8q gain drive vasculogenic mimicry via HIF-2α and VE-cadherin activation in uveal melanoma

Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and is where Vasculogenic Mimicry (VM) was first described. VM enables aggressive cancer cells to independently form blood networks, complicating treatment for patients exhibiting VM. Previous studies linked VE-Cadherin phosphorylation at Y658 to gene expression via Focal Adhesion Kinase (FAK), enhancing the Kaiso/β-catenin/TCF-4 complex associated with VE-Cadherin and thereby promoting VM. Recently, an allosteric HIF-2α inhibitor (Belzutifan) was FDA-approved for VHL-associated ccRCCs. In this research, we elucidate the primary causes of VM formation in UM patients with chromosome 3p loss and chromosome 8q gain, identifying VHL, BAP1, and FAK as important factors driving VM and worsening prognosis. These factors promote abnormal activation of HIF-2α and VE-Cadherin under basal hypoxic conditions, leading to VM formation. Cytoscan 750k experiments on the MUM 2B cell line reveal a loss of chromosome 3p, where the VHL, BAP1, and CTNNB1 genes are located, and a gain of chromosome 8q (FAK), whereas the MUM 2C cell line shows a gain of chromosome 3p. This provides an outstanding cross-sectional model from patient samples to established cell lines for VM studies. LC-MS experiments demonstrate that VE-Cad/ENG expression is related to FAK activity in UM cell lines. Finally, using a combination of Belzutifan (HIF-2α inhibitor) and FAK inhibitor (FAKi), we observed a significant reduction in UM xenografts. Our results lead us to propose combining Belzutifan and FAKi as a personalized treatment strategy for UM patients. This approach inhibits VM formation and counters the initial hypoxic conditions resulting from chromosome 3p loss and chromosome 8q gain in UM patients, instilling confidence in the potential of this treatment strategy.

Dopaminergic modulation and dosage effects on brain state dynamics and working memory component processes in Parkinson’s disease

Parkinson’s disease (PD) is primarily diagnosed through its characteristic motor deficits, yet it also encompasses progressive cognitive impairments that profoundly affect quality of life. While dopaminergic medications are routinely prescribed to manage motor symptoms in PD, their influence extends to cognitive functions as well. Here we investigate how dopaminergic medication influences aberrant brain circuit dynamics associated with encoding, maintenance and retrieval working memory (WM) task-phases processes. PD participants, both on and off dopaminergic medication, and healthy controls, performed a Sternberg WM task during fMRI scanning. We employ a Bayesian state-space computational model to delineate brain state dynamics related to different task phases. Importantly, a within-subject design allows us to examine individual differences in the effects of dopaminergic medication on brain circuit dynamics and task performance. We find that dopaminergic medication alters connectivity within prefrontal-basal ganglia-thalamic circuits, with changes correlating with enhanced task performance. Dopaminergic medication also restores engagement of task-phase-specific brain states, enhancing task performance. Critically, we identify an “inverted-U-shaped” relationship between medication dosage, brain state dynamics, and task performance. Our study provides valuable insights into the dynamic neural mechanisms underlying individual differences in dopamine treatment response in PD, paving the way for more personalized therapeutic strategies.

Single-cell transcriptomic atlas of the human testis across the reproductive lifespan

Testicular aging is associated with declining reproductive health, but the molecular mechanisms are unclear. Here we generate a dataset of 214,369 single-cell transcriptomes from testicular cells of 35 individuals aged 21–69, offering a resource for studying testicular aging and physiology. Machine learning analysis reveals a stronger aging response in somatic cells compared to germ cells. Two waves of aging-related changes are identified: the first in peritubular cells of donors in their 30s, marked by increased basement membrane thickness, indicating a priming state for aging. In their 50s, testicular cells exhibit functional changes, including altered steroid metabolism in Leydig cells and immune responses in macrophages. Further analyses reveal the impact of body mass index on spermatogenic capacity as age progresses, particularly after age 45. Altogether, our findings illuminate molecular alterations during testis aging and their relationship with body mass index, providing a foundation for future research and offering potential diagnostic markers and therapeutic targets.

Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia

X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert. Historically, these patients were treated with frequent doses of oral phosphate supplements and active vitamin D, which was of limited efficiency and associated with adverse effects. However, the management of XLH has evolved in the past few years owing to the availability of burosumab, a fully humanized monoclonal antibody that neutralizes circulating FGF23. Here, we provide updated clinical practice recommendations for the diagnosis and management of XLH to improve outcomes and quality of life in these patients.

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Responses

Your email address will not be published. Required fields are marked *