Related Articles
Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States
Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked with various cancers. Assessment of PFAS in drinking water and cancers can help inform biomonitoring and prevention efforts.
The urothelium: a multi-faceted barrier against a harsh environment
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder’s mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Trace metals induce microbial risk and antimicrobial resistance in biofilm in drinking water
This study investigated the changes in water quality and microbial risks resulting from trace metal pollutants in stagnant drinking water conditions using a 168-h experimental simulation and a metagenomic approach. The results showed that Fe(III) increased the water turbidity. Stagnation also caused significant biofilm growth, which was increased by trace metal pollutants, resulting in a higher production of extracellular polymeric substances (EPS). Adaptive mechanisms of bacterial communities dominated by Pseudomonadota in response to trace metal pollutant stress were discovered. Pathogenic bacteria, particularly Salmonella enterica and Pseudomonas aeruginosa, were found in stagnant drinking water, potentially exacerbated by Al(III). The overall exposure risk of antibiotic resistance genes (ARGs) increased, whereas Fe(III) enhanced the co-occurrence of ARGs and pathogens, potentially leading to serious hidden microbial risks. This study reveals imperceptible microbial risks posed by trace metal pollutants in stagnant drinking water, providing scientific warning and advice for drinking water safety.
The impact of biological sex on diseases of the urinary tract
Biological sex, being female or male, broadly influences diverse immune phenotypes, including immune responses to diseases at mucosal surfaces. Sex hormones, sex chromosomes, sexual dimorphism, and gender differences all contribute to how an organism will respond to diseases of the urinary tract, such as bladder infection or cancer. Although the incidence of urinary tract infection is strongly sex biased, rates of infection change over a lifetime in women and men, suggesting that accompanying changes in the levels of sex hormones may play a role in the response to infection. Bladder cancer is also sex biased in that 75% of newly diagnosed patients are men. Bladder cancer development is shaped by contributions from both sex hormones and sex chromosomes, demonstrating that the influence of sex on disease can be complex. With a better understanding of how sex influences disease and immunity, we can envision sex-specific therapies to better treat diseases of the urinary tract and potentially diseases of other mucosal tissues.
Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Responses