Related Articles

The DEAD-box helicase eIF4A1/2 acts as RNA chaperone during mitotic exit enabling chromatin decondensation

During mitosis, chromosomes condense and decondense to segregate faithfully and undamaged. The exact molecular mechanisms are not well understood. We identify the DEAD-box helicase eIF4A1/2 as a critical factor in this process. In a cell-free condensation assay eIF4A1/2 is crucial for this process, relying on its RNA-binding ability but not its ATPase activity. Reducing eIF4A1/2 levels in cells consistently slows down chromatin decondensation during nuclear reformation. Conversely, increasing eIF4A1/2 concentration on mitotic chromosomes accelerates their decondensation. The absence of eIF4A1/2 affects the perichromatin layer, which surrounds the chromosomes during mitosis and consists of RNA and mainly nucleolar proteins. In vitro, eIF4A1/2 acts as an RNA chaperone, dissociating biomolecular condensates of RNA and perichromatin proteins. During mitosis, the chaperone activity of eIF4A1/2 is required to regulate the composition and fluidity of the perichromatin layer, which is crucial for the dynamic reorganization of chromatin as cells exit mitosis.

Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies

Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.

Coherence synthesis in nonlinear optics

It is commonly assumed that nonlinear frequency conversion requires lasers with high coherence; however, this assumption has constrained our broader understanding of coherence and overlooked the potential role of incoherence in nonlinear interactions. In this work, we study the synthesis of optical spatial coherence in second harmonic generation using quadratic nonlinear photonic crystals. We demonstrate a method where the second harmonic coherence is customized by employing quantitative phase retrieval and a complex square-root filter sequentially on fundamental frequency speckles. As a proof-of-concept, we experimentally show incoherent imaging of a smiley face transitioning from infrared to visible light. Moreover, we apply this method to produce two representative types of structured light beams in second harmonic generation: incoherent vortex and Airy beams. During the nonlinear synthesis of incoherent vortex beams, we have, for the first time, experimentally verified the conservation of orbital angular momentum in the nonlinear frequency conversion process of a low-coherence source. Furthermore, the generated second-harmonic incoherent Airy beam preserves the self-acceleration characteristics of its fundamental frequency counterpart, remaining unaffected by reductions in coherence. Our results not only deepen the fundamental understanding of optical coherence but also unlock exciting possibilities for applications in infrared imaging and fluorescence microscopy where optical nonlinear interactions play an important role.

ZBTB16/PLZF regulates juvenile spermatogonial stem cell development through an extensive transcription factor poising network

Spermatogonial stem cells balance self-renewal with differentiation and spermatogenesis to ensure continuous sperm production. Here, we identify roles for the transcription factor zinc finger and BTB domain-containing protein 16 (ZBTB16; also known as promyelocytic leukemia zinc finger (PLZF)) in juvenile mouse undifferentiated spermatogonia (uSPG) in promoting self-renewal and cell-cycle progression to maintain uSPG and transit-amplifying states. Notably, ZBTB16, Spalt-like transcription factor 4 (SALL4) and SRY-box transcription factor 3 (SOX3) colocalize at over 12,000 promoters regulating uSPG and meiosis. These regions largely share broad histone 3 methylation and acetylation (H3K4me3 and H3K27ac), DNA hypomethylation, RNA polymerase II (RNAPol2) and often CCCTC-binding factor (CTCF). Hi-C analyses show robust three-dimensional physical interactions among these cobound promoters, suggesting the existence of a transcription factor and higher-order active chromatin interaction network within uSPG that poises meiotic promoters for subsequent activation. Conversely, these factors do not notably occupy germline-specific promoters driving spermiogenesis, which instead lack promoter–promoter physical interactions and bear DNA hypermethylation, even when active. Overall, ZBTB16 promotes uSPG cell-cycle progression and colocalizes with SALL4, SOX3, CTCF and RNAPol2 to help establish an extensive and interactive chromatin poising network.

3D genome landscape of primary and metastatic colorectal carcinoma reveals the regulatory mechanism of tumorigenic and metastatic gene expression

Colorectal carcinoma (CRC) is a deadly cancer with an aggressive nature, and how CRC tumor cells manage to translocate and proliferate in a new tissue environment remains not fully understood. Recently, higher-order chromatin structures and spatial genome organization are increasingly implicated in diseases including cancer, but in-depth studies of three-dimensional genome (3D genome) of metastatic cancer are currently lacking, preventing the understanding of the roles of genome organization during metastasis. Here we perform multi-omics profiling of matched normal colon, primary tumor, lymph node metastasis, liver metastasis and normal liver tissue from CRC patients using Hi-C, ATAC-seq and RNA-seq technologies. We find that widespread alteration of 3D chromatin structure is accompanied by dysregulation of genes including SPP1 during the tumorigenesis or metastasis of CRC. Remarkably, the hierarchy of topological associating domain (TAD) changes dynamically, which challenges the traditional view that the TAD structure between tumor and normal tissue is conservative. In addition, we define compartment stability score to measure large-scale alteration in metastatic tumors. To integrate multi-omics data and recognize candidate genes driving cancer metastasis, a pipeline is developed based on Hi-C, RNA-seq and ATAC-seq data. And three candidate genes ARL4C, FLNA, and RGCC are validated to be associated with CRC cell migration and invasion using in vitro knockout experiments. Overall, these data resources and results offer new insights into the involvement of 3D genome in cancer metastasis.

Responses

Your email address will not be published. Required fields are marked *