Author Correction: Long-term intake of Tamogi-take mushroom (Pleurotus cornucopiae) mitigates age-related cardiovascular dysfunction and extends healthy life expectancy

Related Articles

Long-term intake of Tamogi-take mushroom (Pleurotus cornucopiae) mitigates age-related cardiovascular dysfunction and extends healthy life expectancy

Age-related declines in cardiac function and exercise tolerance interfere with healthy living and decrease healthy life expectancy in older individuals. Tamogi-take mushrooms (Pleurotus cornucopiae) are known to contain high levels of Ergothioneine (EGT), an antioxidant with potential health benefits. In this study, we assessed the possibility that long-term consumption of Tamogi-take mushrooms might attenuate age-related decline in cardiac and vascular endothelial function in mice. We found that long-term intake of Tamogi-take mushrooms significantly maintained cardiac and vascular endothelial function and improved exercise tolerance in mice. Long-term mushroom consumption also increased levels of Nrf2 (Nuclear factor E2-related factor 2) protein in heart tissues and increased translation of HO-1 (Heme Oxygenase 1) proteins, which have antioxidant effects in heart and aortic tissues. Finally, long-term Tamogi-take mushroom consumption inhibited ROS accumulation with aging and reduced expression of inflammatory biomarkers. We conclude that ingestion of Tamogi-take mushrooms could serve as a dietary intervention to promote cardiovascular health, support healthy aging and slow the progression of age-related diseases.

Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism

Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake. Our mechanistic study revealed that suppression of NTS-NTSR2 signaling enhanced the phosphorylation of ceramide synthetase 2, increased the abundance of its products ceramides C20–C24, and downregulated the production of GDF15 in white adipose tissues, which was responsible for the elevation of food intake. We discovered a potential causal and positive correlation between serum C20–C24 ceramide levels and human food intake in four populations with different ages and ethnic backgrounds. Together, our study shows that NTS-NTSR2 signaling in white adipocytes can regulate food intake via its direct control of lipid metabolism and production of GDF15. The ceramides C20–C24 are key factors regulating food intake in mammals.

Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index.

Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation

The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.

Responses

Your email address will not be published. Required fields are marked *