Related Articles
Water and wastewater infrastructure inequity in unincorporated communities
Uneven access to water and wastewater infrastructure is shaped by local governance. A substantial number of U.S. households lack adequate access and the U.S. is one of the few countries with large populations living outside of city bounds, in unincorporated areas. Few studies address how infrastructure services and local governance are intertwined at a regional scale. We examine the connection between incorporation status and access to centralized infrastructure, using negative binomial regression. A novel dataset informs this analysis, comprised of 31,383 Census block groups located in nine states representing over 25% of the national population. We find evidence that inequities in access are associated with unincorporated status and poverty rates. Sewer coverage rates are significantly lower for unincorporated communities in close proximity to municipal boundaries. Infrastructure equity could be improved by targeting high-poverty unincorporated communities, addressing challenges with noncontiguous service areas, and strengthening regional water planning and participatory governance.
Sustainable supply chain management practices and performance: The moderating effect of stakeholder pressure
Currently, sustainable supply chain management practices have become an important strategy for firms to improve performance and gain competitive advantage. However, there is a current debate over the performance outcomes of sustainable supply chain management practices. Additionally, the role of stakeholder pressure is frequently overlooked. Drawing on Natural Resources-Based View and Stakeholder Theory, this study aims to elucidate the ambiguous connection between sustainable supply management, sustainable process management, stakeholder pressure and performance, and investigate the mediation role of sustainable process management and the moderation effect of stakeholder pressure. Our analysis, based on data collected from 235 Chinese manufacturing firms, reveals significant insights. First, stakeholder pressure positively moderates the relationship between sustainable process management and performance, while negatively moderates the relationship between sustainable supply management and performance. Second, sustainable process management has a complete mediation effect on the relationship between sustainable supply management and performance. The conclusion not only explains the inconsistent relationship between sustainable supply chain management practice and performance, but also reveals clearly the relationship between sustainable supply management and sustainable process management. Besides, it also highlights the difference in performance outcomes of sustainable supply management and sustainable process management under stakeholder pressures, and has valuable guidance to the practice of sustainable supply chain management in Chinese manufacturing firms.
Solar-driven interfacial evaporation technologies for food, energy and water
Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.
Understanding water-energy-carbon nexus in English and Welsh water industry by assessing eco-productivity of water companies
Understanding the water-energy-carbon nexus in water supply is essential for water regulators and utilities. This study employs a non-radial Data Envelopment Analysis (DEA) model to assess eco-productivity (ecoP) change, a synthetic indicator that integrates carbon emissions, energy costs, and water delivered. It also evaluates its components—eco-efficiency change and eco-technological change—across water companies in England and Wales from 2011 to 2018. The analysis reveals an annual improvement in ecoP of 1.1%, driven by a 2.1% gain in eco-efficiency but offset by a 1.0% decline in technological advancement. The reduction in GHG emissions emerged as the most significant positive contributor, enhancing ecoP by 3.22% annually, while energy costs detracted ecoP by –0.09%. The results underscore the negative impacts of increased water delivery (–1.74%) and the number of connected properties (–1.27%) on ecoP, highlighting the need for demand management policies.
Impact of transboundary water flows on quality-induced water pressure in China
Quality-induced water pressure (P) is gaining increased attention. With the flows of transboundary water, P can be transferred among upstream and downstream regions. Here, we quantified the magnitude of pollutant transmission, and assessed its impact on individual provinces in China. On the annual basis, P was mitigated in 61% of provinces for Chemical Oxygen Demand, 87% for Ammonia Nitrogen, and 84% for Total Phosphorus, while it was intensified for 77% for Total Nitrogen in 2021. The aggregated P were mitigated in 68% of provinces, while intensified in 32% provinces. Furthermore, the monthly assessment has found that the impact of transboundary water on P varies seasonally, generally alleviating in winter and exacerbating in summer. This fluctuation was attributed to the comparatively higher quality of transboundary inflows during winter relative to local water quality. This study provides a scientific foundation for effective water management and quality control.
Responses