Related Articles

A comprehensive review of sustainable materials and toolpath optimization in 3D concrete printing

The construction sector has experienced remarkable advancements in recent years, driven by the demand for sustainable and efficient building practices. Among these advancements, 3D concrete printing has emerged as a highly promising technology that holds the potential to revolutionize the construction industry. This review paper aims to provide a comprehensive analysis of the latest developments in three vital areas related to 3D concrete printing: sustainable materials, structural optimization, and toolpath design. A systematic literature review approach is employed based on established practices in additive manufacturing for construction to explore the intersections between these areas. The review reveals that material recycling plays a crucial role in achieving sustainable construction practices. Extensive research has been conducted on structural optimization methodologies to enhance the performance and efficiency of 3D printed concrete structures. In the printing process, toolpath design plays a significant role in ensuring the precise and efficient deposition of concrete. This paper discusses various toolpath generation strategies that take factors such as geometric complexity, printing constraints, and material flow control into account. In summary, the insights presented in this paper may serve as guidelines for researchers, engineers, and industry professionals towards sustainable and efficient construction practices using 3D concrete printing technology.

3D printing of micro-nano devices and their applications

In recent years, the utilization of 3D printing technology in micro and nano device manufacturing has garnered significant attention. Advancements in 3D printing have enabled achieving sub-micron level precision. Unlike conventional micro-machining techniques, 3D printing offers versatility in material selection, such as polymers. 3D printing technology has been gradually applied to the general field of microelectronic devices such as sensors, actuators and flexible electronics due to its adaptability and efficacy in microgeometric design and manufacturing processes. Furthermore, 3D printing technology has also been instrumental in the fabrication of microfluidic devices, both through direct and indirect processes. This paper provides an overview of the evolving landscape of 3D printing technology, delineating the essential materials and processes involved in fabricating microelectronic and microfluidic devices in recent times. Additionally, it synthesizes the diverse applications of these technologies across different domains.

Disparities in low-carbon concrete GWP at the metropolitan level in the United States

The specification of Global Warming Potential (GWP) targets for low-carbon concrete is essential to guide decarbonization efforts for the built environment. Yet specifying GWP targets by multi-state regions reduces the granularity needed to define GWP targets locally. To probe this paradigm, we analyze 39,536 Environmental Product Declarations (EPDs) and show that 85.3% are manufactured near a highly populated U.S. metropolitan. Our results demonstrate that low-carbon concrete specification targets can only be met in metropolitan areas with sufficient GWP data, such as New York City and Los Angeles, which account for 41% of EPDs and, hence, skew regional GWPs – preventing equitable and attainable low-carbon concrete specifications. The use of supplementary cementitious materials remains a pathway to reduce GWP. Additionally, local differences in transportation and manufacturing reveal new avenues to achieve low-carbon targets. These findings evince the need for concrete GWP specifications at the metropolitan level to meet national decarbonization goals.

Advanced 3D printing accelerates electromagnetic wave absorption from ceramic materials to structures

As 3D printing technology and ceramic material advance, significant progress has been achieved in the field of 3D-printed ceramic materials for electromagnetic wave absorption (EMWA), transitioning from simple material fabrication to complex structure creation. This review summarizes the key advancements in ceramic materials and structures fabricated by 3D printing for EMWA. Despite significant progress, the limitations that remain in 3D-printed ceramic materials and structures for EMWA are highlighted, and future development tendencies are also identified. This review aims to motivate further development and application of 3D-printed ceramic materials and structures for EMWA.

A review of micro-resolved crystochemical and mechanical probes for sustainable cement-based material studies

Exploring sustainable alternative constituents is a key pathway to carbon-neutralization of concrete, but often limited to insufficient understandings of how they interact with conventional concrete components at microscale. In this paper we reviewed the most cutting-edge microprobes used for such purposes, from both laboratory setup to synchrotron radiation-based techniques. We also provided practical guidelines on sample preparation and result analysis, which could benefit researchers who plan to adopt these methods

Responses

Your email address will not be published. Required fields are marked *