Related Articles

NLRP3 inflammasome in neuroinflammation and central nervous system diseases

Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.

Mettl3-m6A-NPY axis governing neuron–microglia interaction regulates sleep amount of mice

Sleep behavior is regulated by diverse mechanisms including genetics, neuromodulation and environmental signals. However, it remains completely unknown regarding the roles of epitranscriptomics in regulating sleep behavior. In the present study, we showed that the deficiency of RNA m6A methyltransferase Mettl3 in excitatory neurons specifically induces microglia activation, neuroinflammation and neuronal loss in thalamus of mice. Mettl3 deficiency remarkably disrupts sleep rhythm and reduces the amount of non-rapid eye movement sleep. We also showed that Mettl3 regulates neuropeptide Y (NPY) via m6A modification and Mettl3 conditional knockout (cKO) mice displayed significantly decreased expression of NPY in thalamus. In addition, the dynamic distribution pattern of NPY is observed during wake-sleep cycle in cKO mice. Ectopic expression of Mettl3 and NPY significantly inhibits microglia activation and neuronal loss in thalamus, and restores the disrupted sleep behavior of cKO mice. Collectively, our study has revealed the critical function of Mettl3-m6A-NPY axis in regulating sleep behavior.

Stroke-induced neuroplasticity in spiny mice in the absence of tissue regeneration

Stroke is a major cause of disability for adults over 40 years of age. While research into animal models has prioritized treatments aimed at diminishing post-stroke damage, no studies have investigated the response to a severe stroke injury in a highly regenerative adult mammal. Here we investigate the effects of transient ischemia on adult spiny mice, Acomys cahirinus, due to their ability to regenerate multiple tissues without scarring. Transient middle cerebral artery occlusion was performed and Acomys showed rapid behavioral recovery post-stroke yet failed to regenerate impacted brain regions. An Acomys brain atlas in combination with functional (f)MRI demonstrated recovery coincides with neuroplasticity. The strength and quality of the global connectome are preserved post-injury with distinct contralateral and ipsilateral brain regions compensating for lost tissue. Thus, we propose Acomys recovers functionally from an ischemic stroke injury not by tissue regeneration but by altering its brain connectome.

Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances

In the context of global ageing, the prevalence of neurodegenerative diseases and dementia, such as Alzheimer’s disease (AD), is increasing. However, the current symptomatic and disease-modifying therapies have achieved limited benefits for neurodegenerative diseases in clinical settings. Halting the progress of neurodegeneration and cognitive decline or even improving impaired cognition and function are the clinically meaningful goals of treatments for neurodegenerative diseases. Ageing is the primary risk factor for neurodegenerative diseases and their associated comorbidities, such as vascular pathologies, in elderly individuals. Thus, we aim to elucidate the role of ageing in neurodegenerative diseases from the perspective of a complex system, in which the brain is the core and peripheral organs and tissues form a holistic network to support brain functions. During ageing, the progressive deterioration of the structure and function of the entire body hampers its active and adaptive responses to various stimuli, thereby rendering individuals more vulnerable to neurodegenerative diseases. Consequently, we propose that the prevention and treatment of neurodegenerative diseases should be grounded in holistic antiageing and rejuvenation means complemented by interventions targeting disease-specific pathogenic events. This integrated approach is a promising strategy to effectively prevent, pause or slow down the progression of neurodegenerative diseases.

Zipper-interacting protein kinase mediates neuronal cell death and cognitive dysfunction in traumatic brain injury via regulating DEDD

Neuronal cell death is a causative process in traumatic brain injury (TBI)-induced structural and functional impairment of the central nervous system. However, the upstream trigger of TBI-induced neuronal loss and the underlying molecular pathways remain unclear. Zipper-interacting protein kinase (ZIPK) has been shown to be upregulated in Alzheimer’s disease and ischemic stroke and to play a role in cellular apoptosis, while its pathological significance in TBI has not been reported. Herein, we discovered for the first time that ZIPK expression was markedly elevated in neurons after TBI and that ZIPK caused massive neuronal apoptosis in peri-contusional brain regions. Zipk haploinsufficiency antagonized neuronal cell death and reversed several typical neuropathological changes induced by TBI. Mechanistically, we found that ZIPK affected neuronal viability by modulating death effector domain-containing DNA binding protein (DEDD) and caspase-3 pathway. Specifically, ZIPK could bind to and phosphorylate DEDD at the S9 residue, thus enhancing the stability of DEDD, and leading to the activation of caspase-3-mediated apoptotic cascade in neurons. The rescue of neuronal loss by ZIPK downregulation effectively alleviated TBI-induced behavioral deficits by preserving motor and cognitive abilities in vivo, supporting the decisive role of ZIPK dysregulation in TBI-associated neuronal dysfunctions by modulating neuronal survival. Furthermore, pharmacological suppression of ZIPK activity by a specific inhibitor prior to TBI protected neurons from brain injury-induced cell death and neuronal degeneration in vitro and in vivo by preventing DEDD upregulation and caspase-3 activation. In conclusion, our data reveal the essential contribution of ZIPK to TBI-induced neuronal cell death through the DEDD/caspase-3 cascade, and suggest the potential of targeting ZIPK as an effective strategy for treating TBI-related neuropathologies.

Responses

Your email address will not be published. Required fields are marked *