Related Articles
An artificial market model for the forex market
As financial markets have transitioned toward electronic trading, there has been a corresponding increase in the number of algorithmic strategies and degree of transaction frequency. This move to high-frequency trading at the millisecond level, propelled by algorithmic strategies, has brought to the forefront short-term market reactions, like market impact, which were previously negligible in low-frequency trading scenarios. Such evolution necessitates a new framework for analyzing and developing algorithmic strategies in these rapidly evolving markets. Employing artificial markets stands out as a solution to this problem. This study aims to construct an artificial foreign exchange market referencing market microstructure theory, without relying on the assumption of information or technical traders. Furthermore, it endeavors to validate the model by replicating stylized facts, such as fat tails, which exhibit a higher degree of kurtosis in the return distribution than that predicted by normal distribution models. The validated artificial market model will be used to simulate market dynamics and algorithm strategies; its generated rates could also be applied to pricing and risk management for currency options and other foreign exchange derivatives. Moreover, this work explores the importance of order flow and the underlying factors of stylized facts within the artificial market model.
Optimization of electric charging infrastructure: integrated model for routing and charging coordination with power-aware operations
With the increasing adoption of electric vehicles (EVs), optimizing charging operations has become imperative to ensure efficient and sustainable mobility. This study proposes an optimization model for the charging and routing of electric vehicles between Origin-Destination (OD) demands. The objective is to develop an efficient and reliable charging plan that ensures the successful completion of trips while considering the limited range and charging requirements of electric vehicles. This paper presents an integrated model for optimizing electric vehicle (EV) charging operations, considering additional factors of setup time, charging time, bidding price estimation, and power availability from three sources: the electricity grid, solar energy, and wind energy. One crucial aspect addressed by the model is the estimation of bidding prices for both day-ahead and intra-day electricity markets. The model also considers the total power availability from the electricity grid, solar energy, and wind energy. The alignment of charging operations with the capacity of the grid and prevailing bidding prices is essential.This ensures that the charging process is optimized and can effectively adapt to the available grid capacity and market conditions. The utilization of renewable energies led to a 42% decrease in the electricity storage capacity available in batteries at charging stations. Furthermore, this integration leads to a substantial cost reduction of approximately 69% compared to scenarios where renewable energy is not utilized. Hence, the proposed model can design renewable energy systems based on the required electricity capacity at charging stations. These findings highlight the compelling financial advantages associated with the adoption of sustainable power sources.
The risk effects of corporate digitalization: exacerbate or mitigate?
This study elaborates on the risk effects of corporate digital transformation (CDT). Using the ratio of added value of digital assets to total intangible assets as a measure of CDT, this study overall reveals an inverse relationship between CDT and revenue volatility, even after employing a range of technical techniques to address potential endogeneity. Heterogeneity analysis highlights that the firms with small size, high capital intensity, and high agency costs benefit more from CDT. It also reveals that advancing information infrastructure, intellectual property protection, and digital taxation enhances the effectiveness of CDT. Mechanism analysis uncovers that CDT not only enhances financial advantages such as bolstering core business and mitigating non-business risks but also fosters non-financial advantages like improving corporate governance and ESG performance. Further inquiries into the side effects of CDT and the dynamics of revenue volatility indicate that CDT might compromise cash flow availability. Excessive digital investments exacerbate operating risks. Importantly, the reduction in operating risk associated with CDT does not sacrifice the potential for enhanced company performance; rather, it appears to augment the value of real options.
Diverse misinformation: impacts of human biases on detection of deepfakes on networks
Social media platforms often assume that users can self-correct against misinformation. However, social media users are not equally susceptible to all misinformation as their biases influence what types of misinformation might thrive and who might be at risk. We call “diverse misinformation” the complex relationships between human biases and demographics represented in misinformation. To investigate how users’ biases impact their susceptibility and their ability to correct each other, we analyze classification of deepfakes as a type of diverse misinformation. We chose deepfakes as a case study for three reasons: (1) their classification as misinformation is more objective; (2) we can control the demographics of the personas presented; (3) deepfakes are a real-world concern with associated harms that must be better understood. Our paper presents an observational survey (N = 2016) where participants are exposed to videos and asked questions about their attributes, not knowing some might be deepfakes. Our analysis investigates the extent to which different users are duped and which perceived demographics of deepfake personas tend to mislead. We find that accuracy varies by demographics, and participants are generally better at classifying videos that match them. We extrapolate from these results to understand the potential population-level impacts of these biases using a mathematical model of the interplay between diverse misinformation and crowd correction. Our model suggests that diverse contacts might provide “herd correction” where friends can protect each other. Altogether, human biases and the attributes of misinformation matter greatly, but having a diverse social group may help reduce susceptibility to misinformation.
Feeling Nature: Measuring perceptions of biophilia across global biomes using visual AI
An increasing number of studies suggest that biophilia encompasses benefits resulting from human–nature interactions. However, quantifying these effects remains challenging. Since natural features vary worldwide, this study explores whether people perceive biophilia universally or if it is influenced by local or geographical conditions. To this end, we quantify, qualify, and map biophilic perceptions (BP) across terrestrial biomes. We first surveyed 400 people in eight cities to identify urban features evoking more positive feelings via Google Street View imagery. Thereafter, survey outcomes were used to calculate specific metrics (coverage, diversity, distribution, intensity, specificity) aimed at measuring BP using a machine-learning model to detect 25 visual biophilic classes (BC). We found that people yield greater benefits from eye contact with nature-based elements within the cityscape unanimously, regardless of biome or gender. We provide AI-driven measurement tools applicable to any city globally to foster understanding and the enhancement of biophilic experiences.
Responses