Related Articles

Silk-inspired in situ web spinning for situated robots

Spiders and insects spin silk in situ for spatially and temporally distributed interactions with their environment. Similarly, ad hoc robotic embodiments—as leveraged to prefabricated robots with fixed boundaries—suggest a solution for increasing bodily capabilities in complex environments and tasks. We blow-spun a polymer solution into fibres that anchored and adhered to supports with diverse morphologies, compliance, and electrical properties, forming single-layered unsupported webs shaped by aerodynamics and solvent evaporation. In situ spun webs augmented obstacle courses simulating anthropogenic and natural environments by providing navigable surfaces for conventional wheeled platforms. Additionally, we spun scaffolds for grippers directly onto pneumatic connectors. Ad hoc mobility extensions and end-effectors suggest potential for search and exploration. Emergent, model-free embodiment and microenvironment shaping—including development and repair—bridge robotics with nature. The inseparability of the agent from its microenvironment increases robots’ spatial and temporal adaptability and broadens our understanding of embodiment in intelligence.

Activated platelet-derived exosomal LRG1 promotes multiple myeloma cell growth

The hypercoagulable state is a hallmark for patients with multiple myeloma (MM) and is associated with disease progression. Activated platelets secrete exosomes and promote solid tumor growth. However, the role of platelet-derived exosomes in MM is not fully clear. We aim to study the underlying mechanism of how platelet-derived exosomes promote MM cell growth. Flow cytometry, Western blot, proteome analysis, co-immunoprecipitation, immunofluorescence staining, and NOD/SCID mouse subcutaneous transplantation model were performed to investigate the role of exosomal LRG1 on multiple myeloma cell growth. Peripheral blood platelets in MM patients were in a highly activated state, and platelet-rich plasma from MM patients significantly promoted cell proliferation and decreased apoptotic cells in U266 and RPMI8226 cells. Leucine-rich-alpha-2-glycoprotein 1 (LRG1) was significantly enriched in MM platelet-derived exosomes. Blocking LRG1 in recipient cells using LRG1 antibody could significantly eliminate the proliferation-promoting effect of platelet-derived exosomes on MM cells. And high exosomal LRG1 was associated with poor prognosis of patients with MM. Mechanistic studies revealed that LRG1 interacted with Olfactomedin 4 (OLFM4) to accelerate MM progression by activating the epithelial-to-mesenchymal transition (EMT) signaling pathway and promoting angiogenesis. Our results revealed that blocking LRG1 is a promising therapeutic strategy for the treatment of MM.

The complex structure of aquatic food webs emerges from a few assembly rules

Food-web theory assumes that larger-bodied predators generally select larger prey. This allometric rule fails to explain a considerable fraction of trophic links in aquatic food webs. Here we show that food-web constraints result in guilds of predators that vary in size but have specialized on prey of the same size, and that the distribution of such specialist guilds explains about one-half of the food-web structure. We classified 517 pelagic species into five predator functional groups. Most of these follow three prey selection strategies: a guild following the allometric rule whereby larger predators eat larger prey and two guilds of specialists that prefer either smaller or larger prey than predicted by the allometric rule. Such coexistence of non-specialist and specialist guilds independent from taxa or body size points towards structural principles behind ecological complexity. We show that the pattern describes >90% of observed linkages in 218 food webs in 18 aquatic ecosystems worldwide. The pattern can be linked to eco-evolutionary constraints to prey exploitation and provides a blueprint for more effective food-web models.

Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines

The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.

Mobilizing power quality and reliability measurements for electricity equity and justice in Africa

In sub-Saharan Africa, urban electricity inequities manifesting as poor power quality and reliability (PQR) are prevalent. Yet, granular PQR data and frameworks for assessing PQR inequities and guiding equitable electricity interventions remain sparse. To address this gap, we present a conceptual framework that leverages energy justice, capability and multidimensional poverty theories alongside concepts relating to power systems to quantify PQR inequities in sub-Saharan Africa. To demonstrate our framework and using 1 year’s worth of remotely sensed PQR data from Accra, Ghana, we assessed the distributive scale of PQR inequities, explored how multidimensional poverty exacerbates these inequities and examined the impact of PQR on households’ domestic capabilities. We found wider patterns of PQR inequities and a link between poor PQR and neighbourhoods with higher multidimensional poverty. We conclude that using remotely sensed data combined with justice and capability frameworks offers a powerful method for revealing PQR inequities and driving sustainable energy transitions.

Responses

Your email address will not be published. Required fields are marked *