Related Articles

The oral-gut microbiota axis: a link in cardiometabolic diseases

The oral-gut microbiota axis plays a crucial role in cardiometabolic health. This review explores the interactions between these microbiomes through enteric, hematogenous, and immune pathways, resulting in disruptions in microbial balance and metabolic processes. These disruptions contribute to systemic inflammation, metabolic disorders, and endothelial dysfunction, which are closely associated with cardiometabolic diseases. Understanding these interactions provides insights for innovative therapeutic strategies to prevent and manage cardiometabolic diseases.

Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia

X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert. Historically, these patients were treated with frequent doses of oral phosphate supplements and active vitamin D, which was of limited efficiency and associated with adverse effects. However, the management of XLH has evolved in the past few years owing to the availability of burosumab, a fully humanized monoclonal antibody that neutralizes circulating FGF23. Here, we provide updated clinical practice recommendations for the diagnosis and management of XLH to improve outcomes and quality of life in these patients.

Efficacy of oral irrigators compared to other interdental aids for managing peri-implant diseases: a systematic review

Peri-implant diseases (peri-implant mucositis and peri-implantitis) are inflammatory conditions that affect the peri-implant tissues and are induced by microbial biofilms (dental plaque) formed around the implant. Removal of biofilm is the fundamental step in managing peri-implant diseases. Interdental cleaning aids such as interdental brush, unitufted brush, or oral irrigation along with regular toothbrushing are recommended for effective plaque control around implants. The present systematic review aims to evaluate the efficacy of home use of oral irrigators compared to other plaque control methods for managing peri-implant diseases.

Frequency and factors associated with the utilization (curative and preventive) of oral health care services among pregnant women in Kinshasa, Democratic Republic of Congo

The Democratic Republic of Congo (DRC) has one of the highest maternal and neonatal mortality rates in Africa. There is a growing body of evidence about the relationship between poor oral health and adverse pregnancy outcomes. However, there is a lack of information about oral health status during pregnancy in the DRC. This study aimed to identify the factors related to the utilization of oral health care services among pregnant women.

Organoids in the oral and maxillofacial region: present and future

The oral and maxillofacial region comprises a variety of organs made up of multiple soft and hard tissue, which are anatomically vulnerable to the pathogenic factors of trauma, inflammation, and cancer. The studies of this intricate entity have been long-termly challenged by a lack of versatile preclinical models. Recently, the advancements in the organoid industry have provided novel strategies to break through this dilemma. Here, we summarize the existing biological and engineering approaches that were employed to generate oral and maxillofacial organoids. Then, we detail the use of modified co-culture methods, such as cell cluster co-inoculation and air-liquid interface culture technology to reconstitute the vascular network and immune microenvironment in assembled organoids. We further retrospect the existing oral and maxillofacial assembled organoids and their potential to recapitulate the homeostasis in parental tissues such as tooth, salivary gland, and mucosa. Finally, we discuss how the next-generation organoids may benefit to regenerative and precision medicine for treatment of oral-maxillofacial illness.

Responses

Your email address will not be published. Required fields are marked *