Related Articles

BAIAP2L2 promotes the malignancy of hepatocellular carcinoma via GABPB1-mediated reactive oxygen species imbalance

Hepatocellular carcinoma (HCC) is a common type of cancer worldwide and ranks as the fourth leading cause of cancer-related deaths. This research investigation identified an upregulation of BAI1-associated protein 2-like 2 (BAIAP2L2) in HCC tissues, which was found to be an independent prognostic factor for overall survival in HCC patients. BAIAP2L2 was observed to enhance cell proliferation, metastasis, stemness, cell cycle progression, and inhibit apoptosis in HCC. Mechanistically, NFκB1 was found to stimulate BAIAP2L2 transcription by directly binding to its promoter region. BAIAP2L2 interacts with GABPB1 to inhibit its ubiquitin-mediated degradation and promote its nuclear translocation. BAIAP2L2 inhibits the levels of reactive oxygen species (ROS) by regulating GABPB1, thereby promoting cancer properties in HCC and reducing the sensitivity of HCC to lenvatinib. In summary, this study elucidates the role and underlying mechanism of BAIAP2L2 in HCC, providing a potential biomarker and therapeutic target for this disease.

Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets

Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.

Energy metabolism in health and diseases

Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.

Targeting of TAMs: can we be more clever than cancer cells?

With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.

Complement activation in tumor microenvironment after neoadjuvant therapy and its impact on pancreatic cancer outcomes

Neoadjuvant therapy (NAT) is increasingly being used for pancreatic ductal adenocarcinoma (PDAC). This study investigates how NAT differentially impacts PDAC’s carcinoma cells and the tumor microenvironment (TME). Spatial transcriptomics was used to compare gene expression profiles in carcinoma cells and the TME of 23 NAT-treated versus 13 NAT-naïve PDACs. Findings were validated by single-nucleus RNA sequencing (snRNA-seq) analysis. NAT induces apoptosis and inhibits proliferation of carcinoma cells and coordinately upregulates multiple complement genes (C1R, C1S, C3, C4B and C7) within the TME. Higher TME complement expression following NAT is associated with increased immunomodulatory and neurotrophic cancer-associated fibroblasts (CAFs); more CD4+ T cells; reduced immune exhaustion gene expression, and improved overall survival. snRNA-seq analysis demonstrates C3 complement is mainly upregulated in CAFs. These findings suggest that local complement dynamics could serve as a novel biomarker for prognosis, evaluating treatment response, and guiding therapeutic strategies in NAT-treated PDAC patients.

Responses

Your email address will not be published. Required fields are marked *