Related Articles
SMARCB1-driven EGFR-GLI1 epigenetic alterations in lung cancer progression and therapy are differentially modulated by MEOX2 and GLI-1
Lung cancer remains the leading cause of cancer-related mortality globally, with genes such as SMARCB1, MEOX2, and GLI-1 playing significant roles in its malignancy. Despite their known involvement, the specific molecular contributions of these genes to lung cancer progression, particularly their effects on epigenetic modifications on oncogenes sequences as EGFR and GLI-1, and their influence in the response to EGFR-TKI-based therapies, have not been fully explored. Our study reveals how MEOX2 and GLI-1 are key molecular modulators of the GLI-1 and EGFR-epigenetic patterns, which in turn transcriptionally and epigenetically affect EGFR gene expression in lung cancer. Additionally, MEOX2 was found to significantly promote in vivo lung tumor progression and diminish the effectiveness of EGFR-TKI therapies. Conversely, mSWI/SNF derived subunit SMARCB1 was detected to suppress tumor growth and enhance the oncological therapeutic response in in vivo studies by inducing epigenetic modifications in the GLI-1 and EGFR genetic sequences. Furthermore, our results suggest that BRD9 may contribute to the activation of both lung cancer oncogenes GLI-1 and EGFR. Such findings suggest that SMARCB1 and MEOX2 could serve as important prognosis biomarkers and target genes in human lung cancer therapy, offering new opportunities for the development of more effective and selective treatment strategies in the field of lung malignant diseases.
Baicalein inhibits cell proliferation and induces apoptosis in brain glioma cells by downregulating the LGR4-EGFR pathway
Patients diagnosed with brain glioma have a poor prognosis and limited therapeutic options. LGR4 is overexpressed in brain glioma and involved in the tumorigenesis of many tumors. Baicalein (BAI) is a kind of flavonoid that has exhibited anti-tumor effects in various tumors. Nevertheless, the functions and associations of BAI and LGR4 in brain glioma remain unclear. In this study, Gene Expression Profiling Interactive Analysis and Human Protein Atlas databases were used to perform expression and survival analysis of LGR4 in brain glioma patients. Subsequently, the significance of LGR4-EGFR in brain glioma cells (HS683 and KNS89) and brain glioma animal models was explored by RNA interference and subcutaneous transplantation. Additionally, brain glioma cells were treated with BAI to explore the roles and mechanisms of BAI in brain glioma. The results showed that LGR4 was highly expressed in brain glioma and was related to a poor prognosis. LGR4 knockdown repressed the proliferation and EGFR phosphorylation but induced apoptosis in brain glioma cells. However, these effects were reversed by EGFR overexpression and CBL knockdown. In contrast, both in vitro and in vivo experiments revealed that LGR4 overexpression facilitated brain glioma cell malignant behavior and promoted tumor development, but these effects were rescued by BAI and an EGFR inhibitor. Furthermore, si-LGR4 accelerated EGFR protein degradation, while oe-LGR4 exhibited the opposite effect. Without affecting normal cellular viability, BAI inhibited malignant behavior, interacted with LGR4, and blocked the LGR4-EGFR pathway for brain glioma cells. In conclusion, our data suggested that BAI inhibited brain glioma cell proliferation and induced apoptosis by downregulating the LGR4-EGFR pathway, which provides a novel strategy and potential therapeutic targets to treat brain glioma.
Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin—the “tip-trunk” domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Cancer-associated fibroblasts promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la positive feedback loop
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains a major challenge in the treatment of lung cancer. Cancer associated fibroblasts (CAFs) play a key role in promoting resistance to anti-cancer therapies. This study identified a subpopulation of CAFs characterized by the overexpression of collagen triple helix repeat-containing 1 (CTHRC1) through single-cell RNA sequencing of lung cancer patients undergoing EGFR-TKI treatment. These CTHRC1+ CAFs were enriched in drug-resistant tumors. Mechanistically, CTHRC1+ CAFs enhance the glycolytic activity of cancer cells by activating the TGF-β/Smad3 signaling pathway. Excess lactate produced in the process of glycolysis further upregulates CTHRC1 expression in CAFs through histone lactylation, creating a positive feedback loop that sustains EGFR-TKI resistance. The study also demonstrated that Gambogenic Acid, a natural compound, can disrupt this feedback loop, thereby improving the efficacy of EGFR-TKI therapy. Additionally, the presence of CTHRC1+ CAFs in tumor tissues could serve as a biomarker for predicting the response to EGFR-TKI therapy and patient prognosis. Overall, this study highlights the significant role of CAFs in EGFR-TKI resistance and suggests that targeting CTHRC1+ CAFs could be a promising strategy to overcome drug resistance in lung cancer.
Esophageal ILC2s mediate abnormal epithelial remodeling in eosinophilic esophagitis via Areg-EGFR signaling
Eosinophilic esophagitis (EoE) is a chronic allergic disorder characterized by eosinophilia and epithelial thickening, resulting in dysphagia. While emerging evidence implicates increased frequencies of group 2 innate lymphoid cells (ILC2s) and increased interleukin (IL)-33 expression in EoE pathogenesis, the precise mechanisms remain unclear. In this study, we investigated the role of ILC2s in EoE pathogenesis. We observed an abundance of KLRG1+ ILC2s in the esophagi of healthy mice, with their numbers significantly increasing in murine EoE models and humans. Using a murine EoE model, we demonstrated the recapitulation of EoE-associated features, including basal-cell hyperproliferation, epithelial thickening, and eosinophilia. Notably, these characteristics are absent in ILC-deficient mice, whereas mice lacking IL-5 or eosinophils display epithelial defects, highlighting the pivotal role of ILC2s in EoE pathogenesis. Further investigations revealed increased amphiregulin (Areg) production by esophageal ILC2s in mice. The administration of Areg induced epithelial defects similar to those observed in EoE. Mechanistic studies using human esophageal cell lines revealed Areg-induced phosphorylation of epidermal growth factor receptor (EGFR). Significatntly, treatment with anti-Areg agents and EGFR inhibitors effectively attenuated EoE development, highlighting the therapeutic potential of targeting the Areg-EGFR axis.
Responses