Related Articles

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Mechanisms of NLRP3 activation and inhibition elucidated by functional analysis of disease-associated variants

The NLRP3 inflammasome is a multiprotein complex that mediates caspase-1 activation and the release of proinflammatory cytokines, including interleukin (IL)-1β and IL-18. Gain-of-function variants in the gene encoding NLRP3 (also called cryopyrin) lead to constitutive inflammasome activation and excessive IL-1β production in cryopyrin-associated periodic syndromes (CAPS). Here we present functional screening and automated analysis of 534 NLRP3 variants from the international INFEVERS registry and the ClinVar database. This resource captures the effect of NLRP3 variants on ASC speck formation spontaneously, at low temperature, after inflammasome stimulation and with the specific NLRP3 inhibitor MCC950. Most notably, our analysis facilitated the updated classification of NLRP3 variants in INFEVERS. Structural analysis suggested multiple mechanisms by which CAPS variants activate NLRP3, including enhanced ATP binding, stabilizing the active NLRP3 conformation, destabilizing the inactive NLRP3 complex and promoting oligomerization of the pyrin domain. Furthermore, we identified pathogenic variants that can hypersensitize the activation of NLRP3 in response to nigericin and cold temperature exposure. We also found that most CAPS-related NLRP3 variants can be inhibited by MCC950; however, NLRP3 variants with changes to proline affecting helices near the inhibitor binding site are resistant to MCC950, as are variants in the pyrin domain, which likely trigger activation directly with the pyrin domain of ASC. Our findings could help stratify the CAPS population for NLRP3 inhibitor clinical trials and our automated methodologies can be implemented for molecules with a different mechanism of activation and in laboratories worldwide that are interested in adding new functionally validated NLRP3 variants to the resource. Overall, our study provides improved diagnosis for patients with CAPS, mechanistic insight into the activation of NLRP3 and stratification of patients for the future application of targeted therapeutics.

Selection for somatic escape variants in SERPINA1 in the liver of patients with alpha-1 antitrypsin deficiency

Somatic variants accumulate in non-malignant tissues with age. Functional variants, leading to clonal advantage of hepatocytes, accumulate in the liver of patients with acquired chronic liver disease (CLD). Whether somatic variants are common to CLD from differing etiologies is unknown. We analyzed liver somatic variants in patients with genetic CLD from alpha-1 antitrypsin (A1AT) deficiency or hemochromatosis. We show that somatic variants in SERPINA1, the gene encoding A1AT, are strongly selected for in A1AT deficiency, with evidence of convergent evolution. Acquired SERPINA1 variants are clustered at the carboxyl terminus of A1AT, leading to truncation. In vitro and in vivo, C-terminal truncation variants reduce disease-associated Z-A1AT polymer accumulation and disruption of the endoplasmic reticulum, supporting the C-terminal domain swap mechanism. Therefore, somatic escape variants from a deleterious germline variant are selected for in A1AT deficiency, suggesting that functional somatic variants are disease-specific in CLD and point to disease-associated mechanisms.

Four cardiomyopathy patients with a heterozygous DSG2 p.Arg119Ter variant

DSG2, encoding desmoglein-2, is one of the causative genes of arrhythmogenic cardiomyopathy. We previously identified a homozygous DSG2 p.Arg119Ter stop-gain variant in a patient with juvenile-onset cardiomyopathy and advanced biventricular heart failure. However, the pathological significance and prevalence of the heterozygous DSG2 p.Arg119Ter variant remains uncertain. Here, we identified four unrelated patients with cardiomyopathy with heterozygous DSG2 p.Arg119Ter variants among 808 patients with nonischemic cardiomyopathy; the allele frequency was 0.0037, which is more than 50-fold greater than that reported in the general Japanese population. These patients were clinically diagnosed with arrhythmogenic right ventricular cardiomyopathy (Pt-1), dilated cardiomyopathy (DCM) after ventricular septum defect closure surgery (Pt-2), DCM (Pt-3), and end-stage hypertrophic cardiomyopathy (Pt-4). The patients also exhibited reduced left ventricular contractile function and varying clinical courses. Genetic analysis identified additional possible causative variants, DSG2 p.Arg292Cys in Pt-1 and BAG3 p.His166SerfsTer6 in Pt-3. Immunohistochemical analysis of endomyocardial biopsy samples revealed that the expression of not only desmoglein-2 but also desmoplakin was markedly reduced. Transmission electron microscopy revealed pale and fragmented desmosomes and widened gaps between intercalated discs in the myocardium. A microforce test using human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) demonstrated reduced contractility in iPSC-CMs carrying a heterozygous truncating variant in DSG2. These data suggest that the DSG2 p.Arg119Ter variant is concealed in patients with cardiomyopathy with heart failure, and desmosome impairment may be a latent exacerbating factor of contractile dysfunction and disease progression.

Whole-genome sequencing analysis identifies rare, large-effect noncoding variants and regulatory regions associated with circulating protein levels

The contribution of rare noncoding genetic variation to common phenotypes is largely unknown, as a result of a historical lack of population-scale whole-genome sequencing data and the difficulty of categorizing noncoding variants into functionally similar groups. To begin addressing these challenges, we performed a cis association analysis using whole-genome sequencing data, consisting of 1.1 billion variants, 123 million noncoding aggregate-based tests and 2,907 circulating protein levels in ~50,000 UK Biobank participants. We identified 604 independent rare noncoding single-variant associations with circulating protein levels. Unlike protein-coding variation, rare noncoding genetic variation was almost as likely to increase or decrease protein levels. Rare noncoding aggregate testing identified 357 conditionally independent associated regions. Of these, 74 (21%) were not detectable by single-variant testing alone. Our findings have important implications for the identification, and role, of rare noncoding genetic variation associated with common human phenotypes, including the importance of testing aggregates of noncoding variants.

Responses

Your email address will not be published. Required fields are marked *