Related Articles
Functional brain network dynamics mediate the relationship between female reproductive aging and interpersonal adversity
Premature reproductive aging is linked to heightened stress sensitivity and psychological maladjustment across the life course. However, the brain dynamics underlying this relationship are poorly understood. Here, to address this issue, we analyzed multimodal data from female participants in the Adolescent Brain and Cognitive Development (longitudinal, N = 441; aged 9–12 years) and Human Connectome-Aging (cross-sectional, N = 130; aged 36–60 years) studies. Age-specific intrinsic functional brain network dynamics mediated the link between reproductive aging and perceptions of greater interpersonal adversity. The adolescent profile overlapped areas of greater glutamatergic and dopaminergic receptor density, and the middle-aged profile was concentrated in visual, attentional and default mode networks. The two profiles showed opposite relationships with patterns of functional neural network variability and cortical atrophy observed in psychosis versus major depressive disorder. Our findings underscore the divergent patterns of brain aging linked to reproductive maturation versus senescence, which may explain developmentally specific vulnerabilities to distinct disorders.
Commentary: Why is genetic testing underutilized worldwide? The case for hereditary breast cancer
It is thirty years since the BRCA1 and BRCA2 genes were discovered and genetic testing for BRCA1 and BRCA2 was introduced. Despite increasing awareness of the genetic basis of cancer and our evolving knowledge of effective means of prevention, screening, and treatment for hereditary breast and ovarian cancers, genetic testing is underutilized, and most mutation carriers remain unidentified. In this commentary, we explore possible reasons for why this might be so. Our focus is on factors that may influence or deter a patient from pursuing testing, rather than discussing the implications of receiving a positive test result. Issues of concern include an inadequate number of genetic counselors, restrictive (and conflicting) eligibility criteria for testing, the cost of the test, health insurance coverage, fear of future insurance discrimination, privacy issues, lack of familiarity with the testing process in primary care and gaps in both patient and provider knowledge about the impact and the value of testing. We discuss how these factors may lead to the underutilization of genetic testing in North America and throughout the world and discuss alternative models of genetic healthcare delivery. We have invited leaders in cancer genetic from around the world to tell us what they think are the barriers to testing in their host countries.
Ecology of timekeeping: feeding times effect clock-controlled behavior, metabolism and reproduction in diurnal vertebrates
To most, if not all, species, the food availability shows both daily and seasonal fluctuations in its timing, quality, and abundance. Hence, coupled with the appetite (urge to eat), it results in species-specific foraging (eating or feeding) patterns, an ecological determinant of almost all the aspects of behavior and physiology in animals. The feeding times control mutually inclusive physiological events by affecting metabolic homeostasis (a direct effect) and/ or by their synchronization effects on the underlying circadian rhythms (an indirect effect). Experiments have shown that food intake at an inappropriate time of the day (i.e., at a wrong time relative to the internal circadian clock) negatively affects the circadian homeostasis and consequently the behavior, metabolism and reproduction in animals. The food availability times as a conditioning environment influence epigenetics, evidenced by chromatin activation/ silencing at genome levels in several species. Here, we review briefly the experimental evidence largely from birds and mammals to provide insights into when and how daily feeding times affect the clock-controlled behavior, metabolism and reproductive fitness in diurnal species.
Co-benefit of forestation on ozone air quality and carbon storage in South China
Substantial forestation-induced greening has occurred over South China, affecting the terrestrial carbon storage and atmospheric chemistry. However, these effects have not been systematically quantified due to complex biosphere-atmosphere interactions. Here we integrate satellite observations, forestry statistics, and an improved atmospheric chemistry model to investigate the impacts of forestation on both carbon storage and ozone air quality. We find that forestation alleviates surface ozone via enhanced dry deposition and suppressed turbulence mixing, outweighing the effect of enhanced biogenic emissions. The 2005-2019 greening mitigated the growing season mean surface ozone by 1.4 ± 2.3 ppbv, alleviated vegetation exposure by 15%-41% (depending on ozone metrics) in forests over South China, and increased Chinese forest carbon storage by 1.8 (1.6-2.1) Pg C. Future forestation may enhance carbon storage by 4.3 (3.8-4.8) Pg C and mitigate surface ozone over South China by 1.4 ± 1.2 ppbv in 2050. Air quality management should consider such co-benefits as forestation becomes necessary for carbon neutrality.
Impact of green bonds on CO2 emissions and disaggregated level renewable electricity in China and the United States of America
Green financial products have emerged that can benefit economic actors in financing green initiatives to promote renewable energy and enable carbon neutrality. Against this backdrop, the study examines the impact of green bonds (GBs) on carbon dioxide (CO2) emissions and renewable electricity generation (EG) in China and the USA, the leading countries in terms of GB issuance and CO2 emissions. To this end, the study conducts a disaggregated-level analysis by applying novel nonlinear quantile methods between January 2, 2019, and July 31, 2023. The results demonstrate that at higher quantiles; (i) GBs mainly have a dampening impact on CO2 emissions from the transportation sector in China and the USA; (ii) GBs have a stimulating impact on solar and wind EG in China; (iii) GBs have a diminishing impact on all types of EGs in the USA. Thus, GBs have an impact on carbon neutrality and renewable energy, which differs by quantiles, sectors, and EG sources. Accordingly, various policy implications are discussed in terms of further contributions of GBs to carbon neutrality and renewable energy in China and the USA.
Responses