Related Articles
Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells
Autophagy shapes CD8 T cell fate; yet the timing, triggers and targets of this process are poorly defined. Herein, we show that naive CD8 T cells have high autophagic flux, and we identify an autophagy checkpoint whereby antigen receptor engagement and inflammatory cytokines acutely repress autophagy by regulating amino acid transporter expression and intracellular amino acid delivery. Activated T cells with high levels of amino acid transporters have low autophagic flux in amino-acid-replete conditions but rapidly reinduce autophagy when amino acids are restricted. A census of proteins degraded and fueled by autophagy shows how autophagy shapes CD8 T cell proteomes. In cytotoxic T cells, dominant autophagy substrates include cytolytic effector molecules, and amino acid and glucose transporters. In naive T cells, mitophagy dominates and selective mitochondrial pruning supports the expression of molecules that coordinate T cell migration and survival. Autophagy thus differentially prunes naive and effector T cell proteomes and is dynamically repressed by antigen receptors and inflammatory cytokines to shape T cell differentiation.
Fast, three-dimensional, live-cell super-resolution imaging with multiplane structured illumination microscopy
Three-dimensional structured illumination microscopy (3D-SIM) doubles the spatial resolution along all dimensions and is used widely in cellular imaging. However, its temporal resolution is constrained by the need for sequential plane-by-plane movement of the sample using a piezo stage for imaging, which often increases the acquisition time to several seconds per volume. To address this limitation, we develop 3D multiplane SIM (3D-MP-SIM), which simultaneously detects multiplane images and reconstructs them using synergistically evolved reconstruction algorithms. Compared with conventional 3D-SIM imaging, 3D-MP-SIM achieves an approximately eightfold increase in the temporal resolution of volumetric super-resolution imaging, with lateral and axial spatial resolutions of about 120 and 300 nm, respectively. The rapid acquisition substantially reduces motion artefacts during the imaging of dynamic structures, such as late endosomes, in live cells. Moreover, we demonstrate the capabilities of 3D-MP-SIM via high-speed time-lapse volumetric imaging of the endoplasmic reticulum at rates of up to 11 volumes per second. We also show the feasibility of dual-colour imaging by observing rapid and close interactions among intra- and intercellular organelles in 3D space. These results highlight the potential of 3D-MP-SIM for explaining dynamic behaviours and interactions at the subcellular level and in three dimensions.
Oncogenic RAS induces a distinctive form of non-canonical autophagy mediated by the P38-ULK1-PI4KB axis
Cancer cells with RAS mutations exhibit enhanced autophagy, essential for their proliferation and survival, making it a potential target for therapeutic intervention. However, the regulatory differences between RAS-induced autophagy and physiological autophagy remain poorly understood, complicating the development of cancer-specific anti-autophagy treatments. In this study, we identified a form of non-canonical autophagy induced by oncogenic KRAS expression, termed RAS-induced non-canonical autophagy via ATG8ylation (RINCAA). RINCAA involves distinct autophagic factors compared to those in starvation-induced autophagy and incorporates non-autophagic components, resulting in the formation of non-canonical autophagosomes with multivesicular/multilaminar structures labeled by ATG8 family proteins (e.g., LC3 and GABARAP). We have designated these structures as RAS-induced multivesicular/multilaminar bodies of ATG8ylation (RIMMBA). A notable feature of RINCAA is the substitution of the class III PI3K in canonical autophagy with PI4KB in RINCAA. We identified a regulatory P38-ULK1-PI4KB-WIPI2 signaling cascade governing this process, where ULK1 triggers PI4KB phosphorylation at S256 and T263, initiating PI4P production, ATG8ylation, and non-canonical autophagy. Importantly, elevated PI4KB phosphorylation at S256 and T263 was observed in RAS-mutated cancer cells and colorectal cancer specimens. Inhibition of PI4KB S256 and T263 phosphorylation led to a reduction in RINCAA activity and tumor growth in both xenograft and KPC models of pancreatic cancer, suggesting that targeting ULK1-mediated PI4KB phosphorylation could represent a promising therapeutic strategy for RAS-mutated cancers.
Different types of cell death and their interactions in myocardial ischemia–reperfusion injury
Myocardial ischemia–reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers’ understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Insights on the crosstalk among different cell death mechanisms
The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.
Responses