Related Articles

Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer

Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.

Bifidobacterium animalis subsp. lactis A6 ameliorates bone and muscle loss via modulating gut microbiota composition and enhancing butyrate production

Systematic bone and muscle loss is a complex metabolic disease, which is frequently linked to gut dysfunction, yet its etiology and treatment remain elusive. While probiotics show promise in managing diseases through microbiome modulation, their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated. Employing dextran sulfate sodium (DSS)-induced gut dysfunction model and wide-spectrum antibiotics (ABX)-treated mice model, our study revealed that gut dysfunction instigates muscle and bone loss, accompanied by microbial imbalances. Importantly, Bifidobacterium animalis subsp. lactis A6 (B. lactis A6) administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria. This intervention effectively restored depleted butyrate levels in serum, muscle, and bone tissues caused by gut dysfunction. Furthermore, butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria. Importantly, butyrate inhibited the NF-κB pathway activation, and reduced the secretion of corresponding inflammatory factors in T cells. Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B. lactis A6. These discoveries offer new microbiome directions for translational and clinical research, providing promising strategies for preventing and managing musculoskeletal diseases.

Perturbations in the microbiota-gut-brain axis shaped by social status loss

Social status is closely linked to physiological and psychological states. Loss of social dominance can lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis (MGBA). Here, using a forced loss paradigm to demote dominant mice to subordinate ranks, we find that stress alters the composition and function of the gut microbiota, increasing Muribaculaceae abundance and enhancing butanoate metabolism, and gut microbial depletion resists forced loss-induced hierarchical demotion and behavioral alteration. Single-nucleus transcriptomic analysis of the prefrontal cortex (PFC) indicates that social status loss primarily affected interneurons, altering GABAergic synaptic transmission. Weighted gene co-expression network analysis (WGCNA) reveals modules linked to forced loss in the gut microbiota, colon, PFC, and PFC interneurons, suggesting changes in the PI3K-Akt signaling pathway and the glutamatergic synapse. Our findings provide evidence for MGBA perturbations induced by social status loss, offering potential intervention targets for related brain disorders.

Sodium oligomannate disrupts the adherence of Ribhigh bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice

Sodium oligomannate (GV-971), an oligosaccharide drug approved in China for treating mild-to-moderate Alzheimer’s disease (AD), was previously found to recondition the gut microbiota and limit altered peripheral Th1 immunity in AD transgenic mice. As a follow-up study, we here made advances by pinpointing a Lactobacillus murinus (L.m.) strain that highly expressed a gene encoding a putative adhesin containing Rib repeats (RibhighL.m.) particularly enriched in 5XFAD transgenic mice. Mechanistically, RibhighL.m. adherence to the gut epithelia upregulated fecal metabolites, among which lactate ranked as the top candidate. Excess lactate stimulated the epithelial production of serum amyloid A (SAA) in the gut via the GPR81-NFκB axis, contributing to peripheral Th1 activation. Moreover, GV-971 disrupted the adherence of RibhighL.m. to gut epithelia via direct binding to Rib, which corrected the excess lactate, reduced SAA, and alleviated Th1-skewed inflammation. Together, we gained further insights into the molecular link between gut bacteria and AD progression and the mechanism of GV-971 in treating AD.

Influence of the early-life gut microbiota on the immune responses to an inhaled allergen

Antibiotics, among the most used medications in children, affect gut microbiome communities and metabolic functions. These changes in microbiota structure can impact host immunity. We hypothesized that early-life microbiome alterations would lead to increased susceptibility to allergy and asthma. To test this, mouse pups between postnatal days 5–9 were orally exposed to water (control) or to therapeutic doses of azithromycin or amoxicillin. Later in life, these mice were sensitized and challenged with a model allergen, house dust mite (HDM), or saline. Mice with early-life azithromycin exposure that were challenged with HDM had increased IgE and IL-13 production by CD4+ T cells compared to unexposed mice; early-life amoxicillin exposure led to fewer abnormalities. To test that the microbiota contained the immunological cues to alter IgE and cytokine production after HDM challenge, germ-free mice were gavaged with fecal samples of the antibiotic-perturbed microbiota. Gavage of adult germ-free mice did not result in altered HDM responses, however, their offspring, which acquired the antibiotic-perturbed microbiota at birth showed elevated IgE levels and CD4+ cytokines in response to HDM, and altered airway reactivity. These studies indicate that early-life microbiota composition can heighten allergen-driven Th2/Th17 immune pathways and airway responses in an age-dependent manner.

Responses

Your email address will not be published. Required fields are marked *