Related Articles

VDAC2 and Bak scarcity in liver mitochondria enables targeting hepatocarcinoma while sparing hepatocytes

Differences between normal tissues and invading tumors that allow tumor targeting while saving normal tissue are much sought after. Here we show that scarcity of VDAC2, and the consequent lack of Bak recruitment to mitochondria, renders hepatocyte mitochondria resistant to permeabilization by truncated Bid (tBid), a Bcl-2 Homology 3 (BH3)-only, Bcl-2 family protein. Increased VDAC2 and Bak is found in most human liver cancers and mitochondria from tumors and hepatic cancer cell lines exhibit VDAC2- and Bak-dependent tBid sensitivity. Exploring potential therapeutic targeting, we find that combinations of activators of the tBid pathway with inhibitors of the Bcl-2 family proteins that suppress Bak activation enhance VDAC2-dependent death of hepatocarcinoma cells with little effect on normal hepatocytes. Furthermore, in vivo, combination of S63845, a selective Mcl-1 inhibitor, with tumor-nectrosis factor-related, apoptosis-induncing ligand (TRAIL) peptide reduces tumor growth, but only in tumors expressing VDAC2. Thus, we describe mitochondrial molecular fingerprint that discriminates liver from hepatocarcinoma and allows sparing normal tissue while targeting tumors.

Collaborative orchestration of BH3-only proteins governs Bak/Bax-dependent hepatocyte apoptosis under antiapoptotic protein-deficiency in mice

The fine-tuned balance between anti-apoptotic Bcl-2 family proteins, such as Bcl-xL and Mcl-1, and pro-apoptotic Bcl-2 family proteins, like Bak and Bax, is crucial for maintaining hepatocyte integrity. BH3-only proteins, including Bid, Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk, serve as apoptosis initiators. They are activated by various stimuli, which leads to Bak/Bax activation. We previously reported that Bid and Bim contributed to hepatocyte apoptosis through Bak/Bax activation in the absence of anti-apoptotic proteins Bcl-xL and/or Mcl-1. However, the comprehensive involvement of all eight BH3-only proteins in Bak/Bax-dependent hepatocyte apoptosis remains unclear. Puma disruption suppressed hepatocyte apoptosis in hepatocyte-specific Bcl-xL or Mcl-1 knockout (Bcl-xLΔHep/ΔHep or Mcl-1ΔHep/ΔHep) mice. Disruption of Bid and Bim partially prevented lethality in Mcl-1ΔHep/+ Bcl-xLΔHep/ΔHep mice, although severe hepatocyte apoptosis persisted, which was suppressed by additional Puma disruption. However, hepatocyte apoptosis was still induced compared to that in Mcl-1ΔHep/+ Bcl-xLΔHep/ΔHep BaxΔHep/ΔHep Bak−/− mice. Triple disruption of Bid, Bim and Puma did not prevent induction of hepatocyte apoptosis in tamoxifen-induced Mcl-1iΔHep/iΔHep Bcl-xLiΔHep/iΔHep mice. Primary hepatocytes, isolated from Mcl-1fl/fl Bcl-xLfl/fl Bid−/− Bim−/− Puma−/− mice and immortalized, underwent apoptosis with doxycycline-dependent Cre recombination. Among the remaining five BH3-only proteins, Bik and Hrk were not expressed in these cells, and Noxa knockdown, but not Bad or Bmf knockdown, reduced apoptosis. Noxa disruption alleviated hepatocyte apoptosis in Mcl-1ΔHep/ΔHep mice and tamoxifen-induced Mcl-1iΔHep/iΔHep Bcl-xLiΔHep/iΔHep Bid−/− Bim−/− Puma−/− mice, prolonging survival. Apoptosis persisted in immortalized primary hepatocytes isolated from Mcl-1fl/fl Bcl-xLfl/fl Bid−/− Bim−/− Puma−/− Noxa−/− mice where doxycycline-dependent Cre recombination was induced, but was completely suppressed by Bak/Bax knockdown, while Bad or Bmf knockdown had no effect. In conclusion, among the eight BH3-only proteins, Puma and Noxa, alongside Bid and Bim, contributed to Bak/Bax-dependent hepatocyte apoptosis, but not indispensably, in the absence of Mcl-1 and Bcl-xL.

Insights on the crosstalk among different cell death mechanisms

The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.

Type 2 immunity in allergic diseases

Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.

Cell-associated galectin 9 interacts with cytotoxic T cells confers resistance to tumor killing in nasopharyngeal carcinoma through autophagy activation

Immune effector cells, including cytotoxic T lymphocytes (CTLs) play essential roles in eliminating cancer cells. However, their functionality is often compromised, even when they infiltrate the tumor microenvironment (TME) or are transferred to cancer patients adoptively. In this study, we focused on galectin 9 (G9), an inhibitory ligand that we observed to be predominately positioned on the plasma membrane and readily interacts with CD8 + CTL in the TME of nasopharyngeal carcinoma (NPC). We discovered that cell-cell contact between activated effector CTLs and target tumor cells (TarTC) with G9 overexpression led to cellular death defects. Despite the formation of CTL–TarTC conjugates, there is no impact on the cell number nor viability of CTL, and the release of cytolytic content and associated activity were not completely abrogated. Instead, this interaction promoted autophagy and restricted necrosis in the TarTC. Furthermore, reducing G9 expression in tumor cells enhanced the suppressive effect on tumor growth upon adoptive transfer of activated effector CTL. Additionally, inhibiting autophagy effectively controlled tumor growth in cases of G9 overexpression. Therefore, we highlight the contribution of G9 in facilitating the resistance of NPC to CTL-mediated killing by inducing a selection-cell death state in tumor cells, characterized by increased autophagy and decreased necrosis.

Responses

Your email address will not be published. Required fields are marked *