Related Articles

Immunotherapy targeting a leader sequence cathepsin G-derived peptide

Myeloid azurophil granules provide a rich source of intracellular leukemia antigens. Cathepsin G (CG) is a serine protease that has higher expression in acute myeloid leukemia (AML) blasts in comparison to normal myeloid progenitors. Based on the unique biology of HLA-A*0201 (HLA-A2), in which presentation of leader sequence (LS)-derived peptides is favored, we focused on the LS-CG-derived peptide CG1 (FLLPTGAEA). We previously detected CG1/HLA-A2 complexes on the surface of primary HLA-A2+ AML blasts and cell lines, and immunity targeting CG1/HLA-A2 in leukemia patients. T cell receptor (TCR)-mimic (m) antibodies are immunotherapeutic antibodies that target peptide-HLA (pHLA) complexes. Here we report on the engineering, preclinical efficacy, and safety evaluation of a novel CG1/HLA-A2-targeting, T cell-engager, bispecific antibody (CG1/A2xCD3). CG1/A2xCD3 showed high binding affinity to CG1/HLA-A2 monomers, CD3-Fc fusion protein, and to AML and T cells, with potent killing of HLA-A2+ primary AML and cell lines in vitro and in vivo. This correlated with both tumor- and CG1/A2xCD3-dependent T cell activation and cytokine secretion. Lastly, CG1/A2xCD3 had no activity against normal bone marrow. Together, these results support the targeting of LS-derived peptides and the continued clinical development of CG1/A2xCD3 in the setting of AML.

Targeting of TAMs: can we be more clever than cancer cells?

With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.

Oncogenic and microenvironmental signals drive cell type specific apoptosis resistance in juvenile myelomonocytic leukemia

Juvenile myelomonocytic leukemia (JMML) is caused by constitutively activated RAS signaling and characterized by increased proliferation and predominant myelomonocytic differentiation of hematopoietic cells. Using MxCre;Ptpn11D61Y/+ mice, which model human JMML, we show that RAS pathway activation affects apoptosis signaling through cell type-dependent regulation of BCL-2 family members. Apoptosis resistance observed in monocytes and granulocytes was mediated by overexpression of the anti-apoptotic and down-regulation of the pro-apoptotic members of the BCL-2 family. Two anti-apoptotic proteins, BCL-XL and MCL-1, were directly regulated by the oncogenic RAS signaling but, in addition, were influenced by microenvironmental signals. While BCL-XL and BCL-2 were required for the survival of monocytes, MCL-1 was essential for neutrophils. Interestingly, stem and progenitor cells expressing the oncogenic PTPN11 mutant showed no increased apoptosis resistance. BCL-XL inhibition was the most effective in killing myeloid cells in vitro but was insufficient to completely resolve myeloproliferation in vivo.

The antitumor activity of TGFβ-specific T cells is dependent on IL-6 signaling

Although interleukin (IL)-6 is considered immunosuppressive and tumor-promoting, emerging evidence suggests that it may support antitumor immunity. While combining immune checkpoint inhibitors (ICIs) and radiotherapy in patients with pancreatic cancer (PC) has yielded promising clinical results, the addition of an anti-IL-6 receptor (IL-6R) antibody has failed to elicit clinical benefits. Notably, a robust TGFβ-specific immune response at baseline in PC patients treated solely with ICIs and radiotherapy correlated with improved survival. Recent preclinical studies demonstrated the efficacy of a TGFβ-based immune modulatory vaccine in controlling PC tumor growth, underscoring the important role of TGFβ-specific immunity in PC. Here, we explored the importance of IL-6 for TGFβ-specific immunity in PC. In a murine model of PC, coadministration of the TGFβ-based immune modulatory vaccine with an anti-IL-6R antibody rendered the vaccine ineffective. IL-6R blockade hampered the development of vaccine-induced T-cells and tumoral T-cell infiltration. Furthermore, it impaired the myeloid population, resulting in increased tumor-associated macrophage infiltration and an enhanced immunosuppressive phenotype. In PC patients, in contrast to those receiving only ICIs and radiotherapy, robust TGFβ-specific T-cell responses at baseline did not correlate with improved survival in patients receiving ICIs, radiotherapy and IL-6R blockade. Peripheral blood immunophenotyping revealed that IL-6R blockade altered the T-cell and monocytic compartments, which was consistent with the findings in the murine model. Our data suggest that the antitumor efficacy of TGFβ-specific T cells in PC depends on the presence of IL-6 within the tumor. Consequently, caution should be exercised when employing IL-6R blockade in patients receiving cancer immunotherapy.

Type 2 immunity in allergic diseases

Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.

Responses

Your email address will not be published. Required fields are marked *