Related Articles

Advancements in 2D layered material memristors: unleashing their potential beyond memory

The scalability of two-dimensional (2D) materials down to a single monolayer offers exciting prospects for high-speed, energy-efficient, scalable memristors. This review highlights the development of 2D material-based memristors and potential applications beyond memory, including neuromorphic, in-memory, in-sensor, and complex computing. This review also encompasses potential challenges and future opportunities for advancing these materials and technologies, underscoring the transformative impact of 2D memristors on versatile and sustainable electronic devices and systems.

Memristors based on two-dimensional h-BN materials: synthesis, mechanism, optimization and application

Memristors offer vast application opportunities in storage, logic devices, and computation due to their nonvolatility, low power consumption, and fast operational speeds. Two-dimensional materials, characterized by their novel mechanisms, ultra-thin channels, high mechanical flexibility, and superior electrical properties, demonstrate immense potential in the domain of high-density, fast, and energy-efficient memristors. Hexagonal boron nitride (h-BN), as a new two-dimensional material, has the characteristics of high thermal conductivity, flexibility, and low power consumption, and has a significant application prospect in the field of memristor. In this paper, the recent research progress of the h-BN memristor is reviewed from the aspects of device fabrication, resistance mechanism, and application prospect.

Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: opportunities and challenges

Solution-processable 2D materials (2DMs) are gaining attention for applications in logic, memory, and sensing devices. This review surveys recent advancements in memristors, transistors, and sensors using 2DMs, focusing on their charge transport mechanisms and integration into silicon CMOS platforms. We highlight key challenges posed by the material’s nanosheet morphology and defect dynamics and discuss future potential for monolithic 3D integration with CMOS technology.

Deep Bayesian active learning using in-memory computing hardware

Labeling data is a time-consuming, labor-intensive and costly procedure for many artificial intelligence tasks. Deep Bayesian active learning (DBAL) boosts labeling efficiency exponentially, substantially reducing costs. However, DBAL demands high-bandwidth data transfer and probabilistic computing, posing great challenges for conventional deterministic hardware. Here we propose a memristor stochastic gradient Langevin dynamics in situ learning method that uses the stochastic of memristor modulation to learn efficiency, enabling DBAL within the computation-in-memory (CIM) framework. To prove the feasibility and effectiveness of the proposed method, we implemented in-memory DBAL on a memristor-based stochastic CIM system and successfully demonstrated a robot’s skill learning task. The inherent stochastic characteristics of memristors allow a four-layer memristor Bayesian deep neural network to efficiently identify and learn from uncertain samples. Compared with cutting-edge conventional complementary metal-oxide-semiconductor-based hardware implementation, the stochastic CIM system achieves a remarkable 44% boost in speed and could conserve 153 times more energy.

Bayesian stability and force modeling for uncertain machining processes

Accurately simulating machining operations requires knowledge of the cutting force model and system frequency response. However, this data is collected using specialized instruments in an ex-situ manner. Bayesian statistical methods instead learn the system parameters using cutting test data, but to date, these approaches have only considered milling stability. This paper presents a physics-based Bayesian framework which incorporates both spindle power and milling stability. Initial probabilistic descriptions of the system parameters are propagated through a set of physics functions to form probabilistic predictions about the milling process. The system parameters are then updated using automatically selected cutting tests to reduce parameter uncertainty and identify more productive cutting conditions, where spindle power measurements are used to learn the cutting force model. The framework is demonstrated through both numerical and experimental case studies. Results show that the approach accurately identifies both the system natural frequency and cutting force model.

Responses

Your email address will not be published. Required fields are marked *