Related Articles
Near-field terahertz time-domain spectroscopy for in-line electrical metrology of semiconductor integration processes for memory
Monitoring electrical properties in semiconductor integration processes is crucial in identifying electrical defects that determine the reliability and performance of metal oxide semiconductor field-effect transistors. A non-destructive in-line metrology technique using terahertz (THz) waves was developed to observe electrical properties between semiconductor integration processes. By combining near-field microprobes with THz time-domain spectroscopy (TDS), sub-10 μm resolution was achieved, enabling the measurement of on-chip micro-patterns. The system was integrated into a memory production line and demonstrated consistent results with conventional destructive methods. The TDS signal correction method effectively suppressed signal variations in unwanted layers. The results of non-invasive THz TDS measurements of tungsten films deposited by three different processes were consistent with those obtained by four- point probe method. We also non-destructively detected differences in THz transmission at the gate-oxide/Si-substrate interface due to the infiltration of nitrogen species after the thermal nitridation process at nitridation temperatures ranging from 670 to 730 °C, which were consistent with the results of secondary ion mass spectrometry. Our in-line near-field THz TDS will predict electrical performance immediately after the process, allowing for rapid correction of production conditions.
Improving the thermoelectric performance of scandium nitride thin films by implanting helium ions
Ion implantation is a widely used technique to introduce defects in low-dimensional materials and tune their properties. Here, we investigate the thermoelectric properties of scandium nitride thin films implanted with helium ions, revealing a positive impact of defect engineering on thermoelectric performance. Transport properties modeling and electron microscopy provide insights on the defect distribution in the films. The electrical resistivity and Seebeck coefficient increase significantly in absolute values after implantation and partially recover upon annealing as some of the implantation-induced defects heal. The thermal conductivity decreases by 46 % post- implantation due to the formation of extended defects and nanocavities. Consequently, the thermoelectric figure of merit zT doubles for the sample annealed at 673 K. These findings highlight the potential of controlled ion implantation to enhance thermoelectric properties in thin films, paving the way for further optimization through defect engineering.
Flexible micromachined ultrasound transducers (MUTs) for biomedical applications
The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively. In addition, the development of flexible ultrasound transducers based on these principles has opened up new possibilities for biomedical applications, including biomedical imaging, sensing, and stimulation. This review provides a detailed discussion of the need for flexible micromachined ultrasound transducers (MUTs) and potential applications, their specifications, materials, fabrication, and electronics integration. Specifically, the review covers fabrication approaches and compares the performance specifications of flexible PMUTs and CMUTs, including resonance frequency, sensitivity, flexibility, and other relevant factors. Finally, the review concludes with an outlook on the challenges and opportunities associated with the realization of efficient MUTs with high performance and flexibility.
Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes
Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites. The highly polar 2-F-TPPO incorporated perovskite films demonstrated enhanced photoluminescence quantum yield (PLQY), suppressed defects, and improved crystallinity. When implemented as active layers in PeLEDs, an external quantum efficiency (EQE) of 12.6% with an emission wavelength of 640 nm is achieved, which was 6 times higher compared to the previously reported most efficient vacuum-deposited red PeLEDs (EQE below 2%). Our findings lay the foundations for the further exploration of high-performance vacuum-deposited PeLEDs toward full-color perovskite displays.
Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free Bi0.5Na0.5TiO3 is gaining importance in showing an alternative to lead-based devices. Here we show that (1-x)Bi0.5Na0.5TiO3 – xBaZryTi1-yO3 (best: 0.94Bi0.5Na0.5TiO3 -0.06BaZr0.4Ti0.6O3) shows an increase of recoverable energy density and electric breakdown upon chemical substitution. In thin films derived from Chemical Solution Deposition, we observed that polarization peaks at the morphotropic phase boundary at x = 0.06. While Zr substitution results in reduced polarization, it enhances both efficiency and electric breakdown strength, ultimately doubling the recoverable energy density and the metallization interface by lowering surface roughness. Our dielectric capacitor shows <3% deviation of energy properties over 106 cycles. A virtual device model of a multilayer thin film capacitor (7.25 mJ recoverable energy) was used to compare its performance to already in use multilayer ceramic capacitors.
Responses