Related Articles

Ultrasensitive photoelectric detection with room temperature extremum

Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta2NiSe5) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 1011 cm·Hz1/2·W1 and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta2NiSe5/WS2 is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 1012 cm·Hz1/2·W−1 in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.

Flexible micromachined ultrasound transducers (MUTs) for biomedical applications

The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively. In addition, the development of flexible ultrasound transducers based on these principles has opened up new possibilities for biomedical applications, including biomedical imaging, sensing, and stimulation. This review provides a detailed discussion of the need for flexible micromachined ultrasound transducers (MUTs) and potential applications, their specifications, materials, fabrication, and electronics integration. Specifically, the review covers fabrication approaches and compares the performance specifications of flexible PMUTs and CMUTs, including resonance frequency, sensitivity, flexibility, and other relevant factors. Finally, the review concludes with an outlook on the challenges and opportunities associated with the realization of efficient MUTs with high performance and flexibility.

Inverted pyramid 3-axis silicon Hall-effect magnetic sensor with offset cancellation

Microelectronic magnetic sensors are essential in diverse applications, including automotive, industrial, and consumer electronics. Hall-effect devices hold the largest share of the magnetic sensor market, and they are particularly valued for their reliability, low cost and CMOS compatibility. This paper introduces a novel 3-axis Hall-effect sensor element based on an inverted pyramid structure, realized by leveraging MEMS micromachining and CMOS processing. The devices are manufactured by etching the pyramid openings with TMAH and implanting the sloped walls with n-dopants to define the active area. Through the use of various bias-sense detection modes, the device is able to detect both in-plane and out-of-plane magnetic fields within a single compact structure. In addition, the offset can be significantly reduced by one to three orders of magnitude by employing the current-spinning method. The device presented in this work demonstrated high in-plane and out-of-plane current- and voltage-related sensitivities ranging between 64.1 to 198 V A−1 T1 and 14.8 to 21.4 mV V−1 T−1, with crosstalk below 4.7%. The sensor exhibits a thermal noise floor which corresponds to approximately (0.5,mu text{T}/sqrt{text{Hz}}) at 1.31 V supply. This novel Hall-effect sensor represents a promising and simpler alternative to existing state-of-the-art 3-axis magnetic sensors, offering a viable solution for precise and reliable magnetic field sensing in various applications such as position feedback and power monitoring.

A robust organic hydrogen sensor for distributed monitoring applications

Hydrogen is an abundant and clean energy source that could help to decarbonize difficult-to-electrify economic sectors. However, its safe deployment relies on the availability of cost-effective hydrogen detection technologies. We describe a hydrogen sensor that uses an organic semiconductor as the active layer. It can operate over a wide temperature and humidity range. Ambient oxygen p-dopes the organic semiconductor, which improves hole transport, and the presence of hydrogen reverses this doping process, leading to a drop in current and enabling reliable and rapid hydrogen detection. The sensor exhibits a high responsivity (more than 10,000), fast response time (less than 1 s), low limit of detection (around 192 ppb) and low power consumption (less than 2 μW). It can operate continuously for more than 646 days in ambient air at room temperature. We show that the sensor outperforms a commercial hydrogen detector in realistic sensing scenarios, illustrating its suitability for application in distributed sensor networks for early warning of hydrogen leaks and preventing explosions or fires.

Vision-based tactile sensor design using physically based rendering

High-resolution tactile sensors are very helpful to robots for fine-grained perception and manipulation tasks, but designing those sensors is challenging. This is because the designs are based on the compact integration of multiple optical elements, and it is difficult to understand the correlation between the element arrangements and the sensor accuracy by trial and error. In this work, we introduce the digital design of vision-based tactile sensors using a physically accurate light simulator. The framework modularizes the design process, parameterizes the sensor components, and contains an evaluation metric to quantify a sensor’s performance. We quantify the effects of sensor shape, illumination setting, and sensing surface material on tactile sensor performance using our evaluation metric. The proposed optical simulation framework can replicate the tactile image of the real vision-based tactile sensor prototype without any prior sensor-specific data. Using our approach we can substantially improve the design of a fingertip GelSight sensor. This improved design performs approximately 5 times better than previous state-of-the-art human-expert design at real-world robotic tactile embossed text detection. Our simulation approach can be used with any vision-based tactile sensor to produce a physically accurate tactile image. Overall, our approach enables the automatic design of sensorized soft robots and opens the door for closed-loop co-optimization of controllers and sensors for dexterous manipulation.

Responses

Your email address will not be published. Required fields are marked *