Related Articles
Evaluation of public health and economic impacts of dietary salt reduction initiatives on social security expenditures for cardiovascular disease control in Japan
Japan has undertaken extensive efforts to reduce dietary salt intake and prevent cardiovascular diseases. Although salt consumption has decreased over time, levels remain high, highlighting the need for continued promotion of low-salt food products through collaboration among government bodies, the food industry, academia, and other stakeholders. Effective policy development requires an environment that enables stakeholders to apply scientific evidence on the cost-effectiveness of salt reduction strategies. Our ongoing research focuses on developing simulation models to predict future public health and economic impacts, supporting the establishment of voluntary targets and evidence-based approaches. These strategies aim to lower salt intake, enhance health outcomes, and manage social security expenditures, thereby fostering sustainable development in an aging society.
Solar-driven interfacial evaporation technologies for food, energy and water
Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.
Advancing robust all-weather desalination: a critical review of emerging photothermal evaporators and hybrid systems
All-weather solar-driven desalination systems, integrating photothermal evaporators with hybrid technologies, present a sustainable, cost-effective, and high-efficiency strategy for freshwater production. Despite significant advancements, previous reviews have predominantly focused on daytime evaporation, neglecting the broader scope of all-weather seawater evaporation. This review provides a comprehensive examination of the current status of all-weather seawater evaporators and their hybrid systems. Initially, the review details the system’s composition and operating principles, as well as the design criteria for high-performance evaporators. It then goes over various common photothermal conversion materials for seawater desalination, with a particular emphasis on those materials tailored for all-weather applications. It also offers an in-depth overview to the developed photothermal hybrid systems for all-weather seawater evaporation, including their working principles, the efficiency of evaporation across the day-night cycle, and their practical applications. Lastly, the existing challenges and potential research opportunities are thoroughly discussed.
Investigation and management of resistant hypertension: British and Irish Hypertension Society position statement
People living with resistant hypertension (RH) are at high risk of adverse cardiovascular events. The British and Irish Hypertension Society has identified suspected RH as a condition for which specialist guidance may improve rates of blood pressure control and help clinicians identify those individuals who may benefit from specialist review. In this position statement we provide a practical approach for the investigation and management of adults with RH. We highlight gaps in the current evidence and identify important future research questions. Our aim is to support the delivery of high-quality and consistent care to people living with RH across the UK and Ireland.
Brine management with zero and minimal liquid discharge
Zero liquid discharge (ZLD) and minimal liquid discharge (MLD) are brine management approaches that aim to reduce the environmental impacts of brine discharge and recover water for reuse. ZLD maximizes water recovery and avoids the needs for brine disposal, but is expensive and energy-intensive. MLD (which reduces the brine volume and recovers some water) has been proposed as a practical and cost-effective alternative to ZLD, but brine disposal is needed. In this Review, we examine the concepts, technologies and industrial applications of ZLD and MLD. These brine management strategies have current and potential applications in the desalination, energy, mining and semiconductor industries, all of which produce large volumes of brine. Brine concentration and crystallization in ZLD and MLD often rely on mechanical vapour compression and thermal crystallizers, which are effective but energy-intensive. Novel engineered systems for brine volume reduction and crystallization are under active development to achieve MLD and/or ZLD. These emerging systems, such as membrane distillation, electrodialytic crystallization and solvent extraction desalination, still face challenges to outcompete mechanical vapour compression and thermal crystallizers, underscoring the critical need to maximize the full potential of reverse osmosis to attain ultrahigh water recovery. Brine valorization has potential to partially offset the cost of ZLD and MLD, provided that resource recovery can be integrated into treatment trains economically and in accordance with regulations.
Responses