Related Articles
CD47 is required for mesenchymal progenitor proliferation and fracture repair
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone formation as assessed by microcomputed tomography 10 days post-fracture and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus size due to a reduction in bone relative to WT 15 days-post fracture. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell density. Finally, WT mice with ischemic fracture that were administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
SMARCB1-driven EGFR-GLI1 epigenetic alterations in lung cancer progression and therapy are differentially modulated by MEOX2 and GLI-1
Lung cancer remains the leading cause of cancer-related mortality globally, with genes such as SMARCB1, MEOX2, and GLI-1 playing significant roles in its malignancy. Despite their known involvement, the specific molecular contributions of these genes to lung cancer progression, particularly their effects on epigenetic modifications on oncogenes sequences as EGFR and GLI-1, and their influence in the response to EGFR-TKI-based therapies, have not been fully explored. Our study reveals how MEOX2 and GLI-1 are key molecular modulators of the GLI-1 and EGFR-epigenetic patterns, which in turn transcriptionally and epigenetically affect EGFR gene expression in lung cancer. Additionally, MEOX2 was found to significantly promote in vivo lung tumor progression and diminish the effectiveness of EGFR-TKI therapies. Conversely, mSWI/SNF derived subunit SMARCB1 was detected to suppress tumor growth and enhance the oncological therapeutic response in in vivo studies by inducing epigenetic modifications in the GLI-1 and EGFR genetic sequences. Furthermore, our results suggest that BRD9 may contribute to the activation of both lung cancer oncogenes GLI-1 and EGFR. Such findings suggest that SMARCB1 and MEOX2 could serve as important prognosis biomarkers and target genes in human lung cancer therapy, offering new opportunities for the development of more effective and selective treatment strategies in the field of lung malignant diseases.
Rapid brain tumor classification from sparse epigenomic data
Although the intraoperative molecular diagnosis of the approximately 100 known brain tumor entities described to date has been a goal of neuropathology for the past decade, achieving this within a clinically relevant timeframe of under 1 h after biopsy collection remains elusive. Advances in third-generation sequencing have brought this goal closer, but established machine learning techniques rely on computationally intensive methods, making them impractical for live diagnostic workflows in clinical applications. Here we present MethyLYZR, a naive Bayesian framework enabling fully tractable, live classification of cancer epigenomes. For evaluation, we used nanopore sequencing to classify over 200 brain tumor samples, including 10 sequenced in a clinical setting next to the operating room, achieving highly accurate results within 15 min of sequencing. MethyLYZR can be run in parallel with an ongoing nanopore experiment with negligible computational overhead. Therefore, the only limiting factors for even faster time to results are DNA extraction time and the nanopore sequencer’s maximum parallel throughput. Although more evidence from prospective studies is needed, our study suggests the potential applicability of MethyLYZR for live molecular classification of nervous system malignancies using nanopore sequencing not only for the neurosurgical intraoperative use case but also for other oncologic indications and the classification of tumors from cell-free DNA in liquid biopsies.
Targeting of TAMs: can we be more clever than cancer cells?
With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Atlas of imprinted and allele-specific DNA methylation in the human body
Allele-specific DNA methylation reflects genetic variation and parentally-inherited changes, and is involved in gene regulation and pathologies. Yet, our knowledge of this phenomenon is largely limited to blood. Here we present a comprehensive atlas of allele-specific DNA methylation using deep whole-genome sequencing across 39 normal human cell types. We identified 325k regions, covering 6% of the genome and 11% of CpGs, that show a bimodal distribution of methylated and unmethylated molecules. In 34k of these regions, genetic variations at individual alleles segregate with methylation patterns, validating allele-specific methylation. We also identified 460 regions showing parental allele-specific methylation, the majority of which are novel, as well as 78 regions associated with known imprinted genes. Surprisingly, sequence-dependent and parental allele-dependent methylation is often restricted to specific cell types, revealing unappreciated variation of allele-specific methylation across the human body. Finally, we validate tissue-specific, maternal allele-specific methylation of CHD7, offering a potential mechanism for the paternal bias in the inheritance mode of CHARGE syndrome associated with this gene. The atlas provides a resource for studying allele-specific methylation and regulatory mechanisms underlying imprinted expression in specific human cell types.
Responses