Related Articles
A manifesto for a globally diverse, equitable, and inclusive open science
The field of psychology has rapidly transformed its open science practices in recent years. Yet there has been limited progress in integrating principles of diversity, equity and inclusion. In this Perspective, we raise the spectre of Questionable Generalisability Practices and the issue of MASKing (Making Assumptions based on Skewed Knowledge), calling for more responsible practices in generalising study findings and co-authorship to promote global equity in knowledge production. To drive change, researchers must target all four key components of the research process: design, reporting, generalisation, and evaluation. Additionally, macro-level geopolitical factors must be considered to move towards a robust behavioural science that is truly inclusive, representing the voices and experiences of the majority world (i.e., low-and-middle-income countries).
Exploring corporate social responsibility practices in the telecommunications, broadcasting and courier sectors: a comparative industry analysis
This study aims to dissect and understand the Corporate Social Responsibility (CSR) endeavours of organisations within Malaysia’s telecommunications, broadcasting, postal and courier services sectors, particularly those holding licenses from the Malaysian Communications and Multimedia Commission (MCMC). These sectors were chosen for this study due to their crucial role in Malaysia’s economy and society, their notable environmental influence, the regulatory and public attention they receive as well as the distinct challenges and opportunities they face in implementing CSR. Employing a qualitative methodology, the study utilises a semi-structured interview protocol to gather rich, detailed insights from top management across eight listed and non-listed companies. This approach ensures a comprehensive exploration of CSR types, practices and their implementation within the target sectors. Purposive sampling was adopted to select informants with specific expertise, ensuring that the data collected was relevant and insightful. The findings of this study underscore that while telecommunications firms actively participate in Corporate Social Responsibility (CSR) initiatives, their efforts predominantly benefit the broader society, with less emphasis placed on shareholders. Additionally, it was observed that environmental issues receive relatively minimal attention from these organisations. This diversity highlights the necessity for a more equitable CSR approach that caters equally to the needs of all stakeholders, including the environment. Such a strategy is crucial for cultivating a sustainable and ethically sound business environment. The implications of this research are manifold. For companies, it emphasises the critical nature of adopting an all-encompassing CSR strategy that fosters competitive advantage while promoting sustainable development. The study advocates for a paradigm shift towards CSR practices that are not only philanthropic but also prioritise environmental stewardship and value creation.
Evolution, genetic diversity, and health
Human genetic diversity in today’s world has been shaped by evolutionary history, demographic shifts and environmental exposures, influencing complex traits, disease susceptibility and drug responses. Capturing this diversity is essential for advancing precision medicine and promoting equitable healthcare. Despite the great progress achieved with initiatives such as the human Pangenome and large biobanks that aim for a better representation of human diversity, important challenges remain. In this Perspective, we discuss the importance of diversity in clinical genomics through an evolutionary lens. We highlight progress and challenges and outline key clinical applications of diverse genetic data. We argue that diversifying both datasets and methodologies—integrating ancestral and environmental factors—is crucial for fully understanding the genetic basis of human health and disease.
Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Type 2 immunity in allergic diseases
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Responses