Related Articles

Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order

Many surprising properties of quantum materials result from Coulomb correlations defining electronic quasiparticles and their interaction chains. In van der Waals layered crystals, enhanced correlations have been tailored in reduced dimensions, enabling excitons with giant binding energies and emergent phases including ferroelectric, ferromagnetic and multiferroic orders. Yet, correlation design has primarily relied on structural engineering. Here we present quantitative experiment–theory proof that excitonic correlations can be switched through magnetic order. By probing internal Rydberg-like transitions of excitons in the magnetic semiconductor CrSBr, we reveal their binding energy and a dramatic anisotropy of their quasi-one-dimensional orbitals manifesting in strong fine-structure splitting. We switch the internal structure from strongly bound, monolayer-localized states to weakly bound, interlayer-delocalized states by pushing the system from antiferromagnetic to paramagnetic phases. Our analysis connects this transition to the exciton’s spin-controlled effective quantum confinement, supported by the exciton’s dynamics. In future applications, excitons or even condensates may be interfaced with spintronics; extrinsically switchable Coulomb correlations could shape phase transitions on demand.

Atomistic theory of twist-angle dependent intralayer and interlayer exciton properties in twisted bilayer materials

Twisted bilayers of two-dimensional materials have emerged as a highly tunable platform to study and engineer properties of excitons. However, the atomistic description of these properties has remained a significant challenge as a consequence of the large unit cells of the emergent moiré superlattices. To address this problem, we introduce an efficient atomistic quantum-mechanical approach to solve the Bethe–Salpeter equation that exploits the localization of atomic Wannier functions. We then use this approach to study intra- and interlayer excitons in twisted WS2/WSe2 at a range of twist angles. In agreement with experiment, we find that the optical spectrum exhibits three low-energy peaks for twist angles smaller than 2. The energy splitting between the peaks is described accurately. We also find two low-energy interlayer excitons with weak oscillator strengths. Our approach opens up new opportunities for the atomistic design of light-matter interactions in ultrathin materials.

Mapping the energy-momentum dispersion of hBN excitons and hybrid plasmons in hBN-WSe2 heterostructures

Heterostructures obtained by combining two-dimensional (2D) sheets are widely investigated as a platform for designing new materials with customised characteristics. Transition metal dichalcogenides (TMDCs) are often combined with hexagonal boron nitride (hBN) to enhance their excitonic resonances. However, little is known about how stacking affects excitons and plasmons in TMDCs or their mutual interactions. Here, we combine momentum-resolved electron energy-loss spectroscopy with first-principles calculations to study the energy-momentum dispersion of plasmons in multi-layer WSe2-hBN heterostructures as well as in their isolated components. The dispersion of the high-momentum excitons of hBN, alone and in combination with WSe2, is mapped across the entire Brillouin zone. Signatures of hybridisation in the plasmon resonances and some of the excitons suggest that the contribution of hBN cannot be neglected when interpreting the response of such a heterostructure. The consequences of using hBN as an encapsulant for TMDCs are also discussed.

Bottom-up fabrication of 2D Rydberg exciton arrays in cuprous oxide

Solid-state platforms provide exceptional opportunities for advancing on-chip quantum technologies by enhancing interaction strengths through coupling, scalability, and robustness. Cuprous oxide (Cu2O) has recently emerged as a promising medium for scalable quantum technology due to its high-lying Rydberg excitonic states, akin to those in hydrogen atoms. To harness these nonlinearities for quantum applications, the confinement dimensions must match the Rydberg blockade size, which can reach several microns in Cu2O. Using a CMOS-compatible growth technique, this study demonstrates the bottom-up fabrication of site-selective arrays of Cu2O microparticles. We observed Rydberg excitons up to the principal quantum number n = 5 within these Cu2O arrays on a quartz substrate and analyzed the spatial variation of their spectrum across the array, showing robustness and reproducibility on a large chip. These results lay the groundwork for the deterministic growth of Cu2O around photonic structures, enabling substantial light-matter interaction on integrated photonic platforms and paving the way for scalable, on-chip quantum devices.

Transient dynamics and long-range transport of 2D exciton with managed potential disorder and phonon scattering

Two-dimensional excitons, characterized by high binding energy and valley pseudospin, are key to advancing photonic and electronic devices through controlled spatiotemporal dynamics of exciton flux. However, optimizing excitonic transport and emission dynamics, considering potential disorder and phonon scattering, requires further research. This study systematically investigates the effects of hexagonal boron nitride (hBN) encapsulation on semiconductor monolayers. Time-resolved photoluminescence (TRPL) and femtosecond pump-probe techniques reveal that encapsulation reduces excitonic radiative lifetime and enhances exciton-exciton annihilation, due to increased dielectric screening, which enlarges the Bohr radius and decreases binding energy. It also manages phonon scattering and thermal fluctuations, confirming non-monotonic temperature effects on emission and diffusion. The reduced disorder by hBN leads to a lowered optimized temperature from 250 K to 200 K, concurrently resulting in a doubled enhancement of the effective exciton diffusion coefficient. These findings highlight the importance of thermal and dielectric environmental control for ultrafast 2D exciton-based devices.

Responses

Your email address will not be published. Required fields are marked *