Related Articles
Nellie: automated organelle segmentation, tracking and hierarchical feature extraction in 2D/3D live-cell microscopy
Cellular organelles undergo constant morphological changes and dynamic interactions that are fundamental to cell homeostasis, stress responses and disease progression. Despite their importance, quantifying organelle morphology and motility remains challenging due to their complex architectures, rapid movements and the technical limitations of existing analysis tools. Here we introduce Nellie, an automated and unbiased pipeline for segmentation, tracking and feature extraction of diverse intracellular structures. Nellie adapts to image metadata and employs hierarchical segmentation to resolve sub-organellar regions, while its radius-adaptive pattern matching enables precise motion tracking. Through a user-friendly Napari-based interface, Nellie enables comprehensive organelle analysis without coding expertise. We demonstrate Nellie’s versatility by unmixing multiple organelles from single-channel data, quantifying mitochondrial responses to ionomycin via graph autoencoders and characterizing endoplasmic reticulum networks across cell types and time points. This tool addresses a critical need in cell biology by providing accessible, automated analysis of organelle dynamics.
Cellpose3: one-click image restoration for improved cellular segmentation
Generalist methods for cellular segmentation have good out-of-the-box performance on a variety of image types; however, existing methods struggle for images that are degraded by noise, blurring or undersampling, all of which are common in microscopy. We focused the development of Cellpose3 on addressing these cases and here we demonstrate substantial out-of-the-box gains in segmentation and image quality for noisy, blurry and undersampled images. Unlike previous approaches that train models to restore pixel values, we trained Cellpose3 to output images that are well segmented by a generalist segmentation model, while maintaining perceptual similarity to the target images. Furthermore, we trained the restoration models on a large, varied collection of datasets, thus ensuring good generalization to user images. We provide these tools as ‘one-click’ buttons inside the graphical interface of Cellpose as well as in the Cellpose API.
Comprehensive discovery and functional characterization of the noncanonical proteome
The systematic identification and functional characterization of noncanonical translation products, such as novel peptides, will facilitate the understanding of the human genome and provide new insights into cell biology. Here, we constructed a high-coverage peptide sequencing reference library with 11,668,944 open reading frames and employed an ultrafiltration tandem mass spectrometry assay to identify novel peptides. Through these methods, we discovered 8945 previously unannotated peptides from normal gastric tissues, gastric cancer tissues and cell lines, nearly half of which were derived from noncoding RNAs. Moreover, our CRISPR screening revealed that 1161 peptides are involved in tumor cell proliferation. The presence and physiological function of a subset of these peptides, selected based on screening scores, amino acid length, and various indicators, were verified through Flag-knockin and multiple other methods. To further characterize the potential regulatory mechanisms involved, we constructed a framework based on artificial intelligence structure prediction and peptide‒protein interaction network analysis for the top 100 candidates and revealed that these cancer-related peptides have diverse subcellular locations and participate in organelle-specific processes. Further investigation verified the interacting partners of pep1-nc-OLMALINC, pep5-nc-TRHDE-AS1, pep-nc-ZNF436-AS1 and pep2-nc-AC027045.3, and the functions of these peptides in mitochondrial complex assembly, energy metabolism, and cholesterol metabolism, respectively. We showed that pep5-nc-TRHDE-AS1 and pep2-nc-AC027045.3 had substantial impacts on tumor growth in xenograft models. Furthermore, the dysregulation of these four peptides is closely correlated with clinical prognosis. Taken together, our study provides a comprehensive characterization of the noncanonical proteome, and highlights critical roles of these previously unannotated peptides in cancer biology.
Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex
The spin state of a metal center significantly influences the catalytic activity of its complex, a phenomenon so crucial that it has led to the dedicated field of spin catalysis. Here we investigate the effect of the spin state of an iron-based metal complex on the organic reactivity of its ligands. Specifically, we examined the post-synthetic modification of the spin crossover (SCO) complex [Fe(NH2trz)3](NO3)2 with p-anisaldehyde. A series of experiments were performed to study the transformation of the amino groups depending on the spin state of the metal. Owing to the wide thermal hysteresis loop of the SCO complex, both spin states were compared under identical conditions. The results revealed that the high-spin state led to the formation of 1.34 times more imine functional groups than the low-spin state, we propose that this arises from the different interactions between the solvent and the SCO at the different spin states.
The WAVE complex in developmental and adulthood brain disorders
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer’s disease and Parkinson’s disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Responses