Related Articles
Array of micro-epidermal actuators for noninvasive pediatric flexible conductive hearing aids
Corrective surgeries and implantable aids are highly invasive for pediatric patients with conductive hearing loss. Flexible hearing aids are a noninvasive solution to address pediatric hearing loss. These aids generate vibrations on epidermal layer of skin behind the ear using micro-epidermal actuators to bypass the auditory canal. However, the major challenge is to generate a strong level of vibrations that can reach cochlea. Here, we designed, fabricated, and characterized arrays of micro-epidermal actuators to increase the vibration level from the flexible aids, improve frequency response and control the directionality of vibrations. Our human subject study showed that the flexible hearing aid with an array of actuators improved the hearing threshold by an average of 13.8 dB at 500 Hz, compared to a device with a single actuator. Also, the flexible aid with two actuators enhanced the hearing threshold by 30.5 dB at 1 kHz and 20.5 dB across 0.25–8 kHz versus unaided hearing.
Airborne optical imaging technology: a road map in CIOMP
Airborne optical imaging can flexibly obtain the intuitive information of the observed scene from the air, which plays an important role of modern optical remote sensing technology. Higher resolution, longer imaging distance, and broader coverage are the unwavering pursuits in this research field. Nevertheless, the imaging environment during aerial flights brings about multi-source dynamic interferences such as temperature, air pressure, and complex movements, which forms a serious contradiction with the requirements of precision and relative staticity in optical imaging. As the birthplace of Chinese optical industry, the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) has conducted the research on airborne optical imaging for decades, resulting in rich innovative achievements, completed research conditions, and exploring a feasible development path. This article provides an overview of the innovative work of CIOMP in the field of airborne optical imaging, sorts out the milestone nodes, and predicts the future development direction of this discipline, with the aim of providing inspiration for related research.
Engineering bone/cartilage organoids: strategy, progress, and application
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe2 membranes
Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe2), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe2 NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe2 NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.
Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Responses