Related Articles
Dynamical blockade of a reservoir for optimal performances of a quantum battery
The development of fast and efficient quantum batteries is crucial for the prospects of quantum technologies. In the present paper we demonstrate that both requirements are accomplished in the paradigmatic model of a harmonic oscillator strongly coupled to a highly non-Markovian thermal reservoir. We show that at short times, a dynamical blockade of the reservoir prevents the leakage of energy towards its degrees of freedom, promoting a significant accumulation of energy in the battery with high efficiency. The possibility of implementing these conditions in LC quantum circuits opens up new avenues for solid-state quantum batteries.
Collective quantum enhancement in critical quantum sensing
Critical systems represent a valuable resource in quantum sensing and metrology. Critical quantum sensing (CQS) protocols can be realized using finite-component phase transitions, where criticality arises from the rescaling of system parameters rather than the thermodynamic limit. Here, we show that a collective quantum advantage can be achieved in a multipartite CQS protocol using a chain of parametrically coupled critical resonators in the weak-nonlinearity limit. We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system, which is composed of locally critical elements. We then assess the scaling of the quantum Fisher information with respect to fundamental resources. We demonstrate that the coupled chain outperforms an equivalent ensemble of independent critical sensors, achieving quadratic scaling in the number of resonators. Finally, we show that even with finite Kerr nonlinearity or Markovian dissipation, the critical chain retains its advantage, making it relevant for implementing quantum sensors with current microwave superconducting technologies.
Cartesian and spherical multipole expansions in anisotropic media
The multipole expansion can be formulated in spherical and Cartesian coordinates. By constructing an explicit map linking both formulations in isotropic media, we discover a lack of equivalence between them in anisotropic media. In isotropic media, the Cartesian multipole tensor can be reduced to a spherical tensor containing fewer independent components. In anisotropic media, however, the loss of propagation symmetry prevents this reduction. Consequently, non-harmonic sources radiate fields that can be projected onto a finite set of Cartesian multipole moments but require potentially infinitely many spherical moments. For harmonic sources, the link between the two approaches provides a systematic way to construct the spherical multipole expansion from the Cartesian one. The lack of equivalence between both approaches results in physically significant effects wherever the field propagation includes the Laplace operator. We demonstrate this issue in an electromagnetic radiation inverse problem in anisotropic media, including an analysis of a large-anisotropy regime and an introduction to vector spherical harmonics. We show that the use of the Cartesian approach increases the efficiency and interpretability of the model. The proposed approach opens the door to a broader application of the multipole expansion in anisotropic media.
Frequency shift caused by nonuniform field and boundary relaxation in magnetic resonance and comagnetometers
In magnetic resonance experiments, it is widely recognized that a nonuniform magnetic field can lead to an increase in the resonance line width, as well as a reduction in sensitivity and spectral resolution. However, a nonuniform magnetic field can also cause shifts in resonance frequency, which has received far less attention. In this work, we investigate the frequency shift caused by boundary relaxation and nonuniform magnetic field with arbitrary spatial distribution. We find that this frequency shift is spin-species dependent, implying a systematic error in NMR gyroscopes and comagnetometers. The first order correction to this systematic error is proportional to the difference of boundary relaxation rate, and dominates for small cells. In contrast, the third and higher order corrections arise from the difference of gyromagnetic ratios of spin species, and dominates for large cells. This insight helps understanding the unexplained isotope shifts in recent NMR gyroscopes and new physics searching experiments that utilize comagnetometers. Finally, we propose a tool for wall interaction research based on the frequency shift’s dependency on boundary relaxation.
Universal relations and bounds for fluctuations in quasistatic small heat engines
The efficiency of any heat engine, defined as the ratio of average work output to heat input, is bounded by Carnot’s celebrated result. However, this measure is insufficient to characterize the properties of miniaturized heat engines carrying non-negligible fluctuations, and a study of higher-order statistics of their energy exchanges is required. Here, we generalize Carnot’s result for reversible cycles to arbitrary order moment of the work and heat fluctuations. Our results show that, in the quasistatic limit, higher-order statistics of a small engine’s energetics depend solely on the ratio between the temperatures of the thermal baths. We further prove that our result for the second moment gives universal bounds for the ratio between the variances of work and heat for quasistatic cycles. We test this theory with our previous experimental results of a Brownian Carnot engine and observe the consistency between them, even beyond the quasistatic regime. Our results can be exploited in the design of thermal nanomachines to reduce their fluctuations of work output without marginalizing its average value and efficiency.
Responses