Related Articles
Modelling and design of transcriptional enhancers
Transcriptional enhancers are the genomic elements that contain critical information for the regulation of gene expression. This information is encoded through precisely arranged transcription factor-binding sites. Genomic sequence-to-function models, computational models that take DNA sequences as input and predict gene regulatory features, have become essential for unravelling the complex combinatorial rules that govern cell-type-specific activities of enhancers. These models function as biological ‘oracles’, capable of accurately predicting the activity of novel DNA sequences. By leveraging these oracles, DNA sequences can be optimized towards designed synthetic enhancers with tailored cell-type-specific or cell-state-specific activities. In parallel, generative artificial intelligence is rapidly advancing in genomics and enhancer design. Synthetic enhancers hold great promise for a wide range of biomedical applications, from facilitating fundamental research to enabling gene therapies.
The transcriptomic architecture of common cancers reflects synthetic lethal interactions
To maintain cell fitness, deleterious genetic alterations are buffered by compensatory changes in additional genes. In cancer, buffering processes could be targeted by synthetic lethality. However, despite the large-scale identification of synthetic lethal effects in preclinical models, evidence that these operate clinically is limited. This impedes the application of synthetic lethal approaches. By integrating molecular profiling data from >9,000 cancers with synthetic lethal screens, we show that transcriptomic buffering of tumor suppressor gene (TSG) loss by hyperexpression of synthetic lethal partners is a common phenomenon, extending to multiple TSGs and histotypes. Transcriptomic buffering is also notable in cancers that phenocopy TSG loss, such as BRCAness cancers, where expression of BRCA1/2 synthetic lethal genes correlates with clinical outcome. Synthetic lethal genes that exhibit transcriptomic buffering also represent more robust synthetic lethal effects. These observations have implications for understanding how tumor cells tolerate TSG loss, in part explain transcriptomic architectures in cancer and provide insight into target selection.
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data
Artificial intelligence (AI), specifically Deep learning (DL), has revolutionized biomedical image analysis, but its efficacy is limited by the need for representative, high-quality large datasets with manual annotations. While latest research on synthetic data using AI-based generative models has shown promising results to tackle this problem, several challenges such as lack of interpretability and need for vast amounts of real data remain. This study aims to introduce a new approach—SYNTA—for the generation of photo-realistic synthetic biomedical image data to address the challenges associated with state-of-the art generative models and DL-based image analysis.
An artificial market model for the forex market
As financial markets have transitioned toward electronic trading, there has been a corresponding increase in the number of algorithmic strategies and degree of transaction frequency. This move to high-frequency trading at the millisecond level, propelled by algorithmic strategies, has brought to the forefront short-term market reactions, like market impact, which were previously negligible in low-frequency trading scenarios. Such evolution necessitates a new framework for analyzing and developing algorithmic strategies in these rapidly evolving markets. Employing artificial markets stands out as a solution to this problem. This study aims to construct an artificial foreign exchange market referencing market microstructure theory, without relying on the assumption of information or technical traders. Furthermore, it endeavors to validate the model by replicating stylized facts, such as fat tails, which exhibit a higher degree of kurtosis in the return distribution than that predicted by normal distribution models. The validated artificial market model will be used to simulate market dynamics and algorithm strategies; its generated rates could also be applied to pricing and risk management for currency options and other foreign exchange derivatives. Moreover, this work explores the importance of order flow and the underlying factors of stylized facts within the artificial market model.
Responsive DNA artificial cells for contact and behavior regulation of mammalian cells
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments. These compartments can integrate functional nucleic acid (FNA) modules and light-responsive gold nanorods (AuNRs) to establish a programmable sense-and-respond mechanism to specific stimuli, such as light or ions, orchestrating diverse biological functions, including tissue formation and cellular signaling. By combining two designer STARMs into a dual-channel system, we achieve orthogonally regulated cellular signaling in multicellular communities. Ultimately, the in vivo therapeutic efficacy of STARM in light-guided muscle regeneration in living animals demonstrates the promising potential of smart artificial cells in regenerative medicine.
Responses