Related Articles
Periodontitis impacts on thrombotic diseases: from clinical aspect to future therapeutic approaches
Periodontitis is a chronic inflammatory disease initiated by biofilm microorganisms and mediated by host immune imbalance. Uncontrolled periodontal infections are the leading cause of tooth loss in adults. Thrombotic diseases can lead to partial or complete obstruction of blood flow in the circulatory system, manifesting as organ or tissue ischemia and necrosis in patients with arterial thrombosis, and local edema, pain and circulatory instability in patients with venous thrombosis, which may lead to mortality or fatality in severe case. Recent studies found that periodontitis might enhance thrombosis through bacterial transmission or systemic inflammation by affecting platelet-immune cell interactions, as well as the coagulation, and periodontal therapy could have a prophylactic effect on patients with thrombotic diseases. In this review, we summarized clinical findings on the association between periodontitis and thrombotic diseases and discussed several novel prothrombotic periodontitis-related agents, and presented a perspective to emphasize the necessity of oral health management for people at high risk of thrombosis.
Noise causes cardiovascular disease: it’s time to act
Chronic transportation noise is an environmental stressor affecting a substantial portion of the population. The World Health Organization (WHO) and various studies have established associations between transportation noise and cardiovascular disease (CVD), such as myocardial infarction, stroke, heart failure, and arrhythmia. The WHO Environmental Noise Guidelines and recent reviews confirm a heightened risk of cardiovascular incidents with increasing transportation noise levels.
Early cardio-oncology intervention in thoracic radiotherapy: prospective single-arm pilot study
While there is increasing recognition of the morbidity of cardiovascular disease in cancer survivors, including accelerated atherosclerosis following thoracic radiotherapy, patients are frequently under-optimized for cardiovascular risk.
Plasma proteome variation and its genetic determinants in children and adolescents
Our current understanding of the determinants of plasma proteome variation during pediatric development remains incomplete. Here, we show that genetic variants, age, sex and body mass index significantly influence this variation. Using a streamlined and highly quantitative mass spectrometry-based proteomics workflow, we analyzed plasma from 2,147 children and adolescents, identifying 1,216 proteins after quality control. Notably, the levels of 70% of these were associated with at least one of the aforementioned factors, with protein levels also being predictive. Quantitative trait loci (QTLs) regulated at least one-third of the proteins; between a few percent and up to 30-fold. Together with excellent replication in an additional 1,000 children and 558 adults, this reveals substantial genetic effects on plasma protein levels, persisting from childhood into adulthood. Through Mendelian randomization and colocalization analyses, we identified 41 causal genes for 33 cardiometabolic traits, emphasizing the value of protein QTLs in drug target identification and disease understanding.
Phosphorylation of endothelial histone H3.3 serine 31 by PKN1 links flow-induced signaling to proatherogenic gene expression
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.3 phosphorylation at serine 31 (H3.3S31) regulates disturbed-flow-induced endothelial inflammation by allowing rapid induction of FOS and FOSB, required for inflammatory gene expression. We identified protein kinase N1 (PKN1) as the kinase responsible for disturbed-flow-induced H3.3S31 phosphorylation. Disturbed flow activates PKN1 in an integrin α5β1-dependent manner and induces its translocation into the nucleus, and PKN1 is also involved in the phosphorylation of the AP-1 transcription factor JUN. Mice with endothelium-specific PKN1 loss or endothelial expression of S31 phosphorylation-deficient H.3.3 mutants show reduced endothelial inflammation and disturbed-flow-induced vascular remodeling in vitro and in vivo. Together, we identified a pathway whereby disturbed flow through PKN1-mediated histone phosphorylation and FOS/FOSB induction promotes inflammatory gene expression and vascular inflammation.
Responses