Related Articles
Dopamine in the tail of the striatum facilitates avoidance in threat–reward conflicts
Responding appropriately to potential threats before they materialize is critical to avoiding disastrous outcomes. Here we examine how threat-coping behavior is regulated by the tail of the striatum (TS) and its dopamine input. Mice were presented with a potential threat (a moving object) while pursuing rewards. Initially, the mice failed to obtain rewards but gradually improved in later trials. We found that dopamine in TS promoted avoidance of the threat, even at the expense of reward acquisition. Furthermore, the activity of dopamine D1 receptor-expressing neurons promoted threat avoidance and prediction. In contrast, D2 neurons suppressed threat avoidance and facilitated overcoming the potential threat. Dopamine axon activation in TS not only potentiated the responses of dopamine D1 receptor-expressing neurons to novel sensory stimuli but also boosted them acutely. These results demonstrate that an opponent interaction of D1 and D2 neurons in the TS, modulated by dopamine, dynamically regulates avoidance and overcoming potential threats.
Periodontitis impacts on thrombotic diseases: from clinical aspect to future therapeutic approaches
Periodontitis is a chronic inflammatory disease initiated by biofilm microorganisms and mediated by host immune imbalance. Uncontrolled periodontal infections are the leading cause of tooth loss in adults. Thrombotic diseases can lead to partial or complete obstruction of blood flow in the circulatory system, manifesting as organ or tissue ischemia and necrosis in patients with arterial thrombosis, and local edema, pain and circulatory instability in patients with venous thrombosis, which may lead to mortality or fatality in severe case. Recent studies found that periodontitis might enhance thrombosis through bacterial transmission or systemic inflammation by affecting platelet-immune cell interactions, as well as the coagulation, and periodontal therapy could have a prophylactic effect on patients with thrombotic diseases. In this review, we summarized clinical findings on the association between periodontitis and thrombotic diseases and discussed several novel prothrombotic periodontitis-related agents, and presented a perspective to emphasize the necessity of oral health management for people at high risk of thrombosis.
Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia
X-linked hypophosphataemia (XLH) is a rare metabolic bone disorder caused by pathogenic variants in the PHEX gene, which is predominantly expressed in osteoblasts, osteocytes and odontoblasts. XLH is characterized by increased synthesis of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23), which results in renal phosphate wasting with consecutive hypophosphataemia, rickets, osteomalacia, disproportionate short stature, oral manifestations, pseudofractures, craniosynostosis, enthesopathies and osteoarthritis. Patients with XLH should be provided with multidisciplinary care organized by a metabolic bone expert. Historically, these patients were treated with frequent doses of oral phosphate supplements and active vitamin D, which was of limited efficiency and associated with adverse effects. However, the management of XLH has evolved in the past few years owing to the availability of burosumab, a fully humanized monoclonal antibody that neutralizes circulating FGF23. Here, we provide updated clinical practice recommendations for the diagnosis and management of XLH to improve outcomes and quality of life in these patients.
Cancer cells sense solid stress to enhance metastasis by CKAP4 phase separation-mediated microtubule branching
Solid stress, originating from rigid and elastic components of extracellular matrix and cells, is a typical physical hallmark of tumors. Mounting evidence indicates that elevated solid stress drives metastasis and affects prognosis. However, the molecular mechanism of how cancer cells sense solid stress, thereby exacerbating malignancy, remains elusive. In this study, our clinical data suggest that elevated stress in metastatic solid tumors is highly associated with the expression of cytoskeleton-associated protein 4 (CKAP4). Intriguingly, CKAP4, as a sensitive intracellular mechanosensor, responds specifically to solid stress in a subset of studied tumor micro-environmental elements through liquid–liquid phase separation. These micron-scaled CKAP4 puncta adhere tightly onto microtubules and dramatically reorchestrate their curvature and branching to enhance cell spreading, which, as a result, boosts cancer cell motility and facilitates distant metastasis in vivo. Mechanistically, the intrinsically disordered region 1 (IDR1) of CKAP4 binds to microtubules, while IDR2 governs phase separation due to the Cav1.2-dependent calcium influx, which collectively remodels microtubules. These findings reveal an unprecedented mechanism of how cancer cells sense solid stress for cancer malignancy and bridge the gap between cancer physics and cancer cell biology.
Selective internal radiation with Y-90 resin microspheres (SIRT) for liver metastases of gastro-intestinal stromal tumors (GIST) resistant to tyrosine kinase inhibitor (TKI) therapy
Hepatic metastases of GIST might be the dominant site of progression and resistant to available tyrosine kinase inhibitors (TKIs). Selective internal radiation therapy (SIRT) offers treatment by intratumoral radiation up to 200 Gy. We analyzed the hepatic progression-free survival (H-PFS) in a consecutive patient cohort.
Responses