Related Articles

Photo-assisted technologies for environmental remediation

Industrial processes can lead to air and water pollution, particularly from organic contaminants such as toluene and antibiotics, posing threats to human health. Photo-assisted chemical oxidation technologies leverage light energy to mineralize these contaminants. In this Review, we discuss the mechanisms and efficiencies of photo-assisted advanced oxidation processes for wastewater treatment and photothermal technologies for air purification. The integration of solar energy enhances degradation efficiency and reduces energy consumption, enabling more efficient remediation methods. We evaluate the technological aspects of photo-assisted technologies, such as photo-Fenton, photo-persulfate activation, photo-ozonation and photoelectrochemical oxidation, emphasizing their potential for practical applications. Finally, we discuss the challenges in scaling up photo-assisted technologies for specific environmental remediation needs. Photo-assisted technologies have demonstrated effectiveness in environmental remediation, although large-scale applications remain constrained by high costs. Future potential applications of photo-assisted technologies will require that technology selection be tailored to specific pollution scenarios and engineering processes optimized to minimize costs.

Efficient computation using spatial-photonic Ising machines with low-rank and circulant matrix constraints

Spatial-photonic Ising machines (SPIMs) have shown promise as an energy-efficient Ising machine, but currently can only solve a limited set of Ising problems. There is currently limited understanding on what experimental constraints may impact the performance of SPIM, and what computationally intensive problems can be efficiently solved by SPIM. Our results indicate that the performance of SPIMs is critically affected by the rank and precision of the coupling matrices. By developing and assessing advanced decomposition techniques, we expand the range of problems SPIMs can solve, overcoming the limitations of traditional Mattis-type matrices. Our approach accommodates a diverse array of coupling matrices, including those with inherently low ranks, applicable to complex NP-complete problems. We explore the practical benefits of the low-rank approximation in optimisation tasks, particularly in financial optimisation, to demonstrate the real-world applications of SPIMs. Finally, we evaluate the computational limitations imposed by SPIM hardware precision and suggest strategies to optimise the performance of these systems within these constraints.

ToF-SIMS sputter depth profiling of interphases and coatings on lithium metal surfaces

Lithium metal as a negative electrode material offers ten times the specific capacity of graphitic electrodes, but its rechargeable operation poses challenges like excessive and continuous interphase formation, high surface area lithium deposits and safety issues. Improving the lithium | electrolyte interface and interphase requires powerful surface analysis techniques, such as ToF-SIMS sputter depth profiling.This study investigates lithium metal sections with an SEI layer by ToF-SIMS using different sputter ions. An optimal sputter ion is chosen based on the measured ToF-SIMS sputter depth profiles and SEM analysis of the surface damage. Further, this method is adapted to lithium metal foil with an intermetallic coating. ToF-SIMS sputter depth profiles in both polarities provide comprehensive insights into the coating structure. Both investigations highlight the value of ToF-SIMS sputter depth profiling in lithium metal battery research and offer guidance for future studies.

C(sp3)–heteroatom bond formation by iron-catalyzed soft couplings

Carbon–heteroatom bonds are of great importance due to their prevalence in pharmaceuticals, agrochemicals, materials, and natural products. Despite the effective use of metal-catalyzed cross-coupling reactions between sp2-hybridized organohalides and soft heteroatomic nucleophiles for carbon–heteroatom bond formation, the use of sp3-hybridized organohalides remain limited and the coupling with thiols remains elusive. Here, we report the coupling of sp3-hybridized benzyl or tertiary halides with soft thiol nucleophiles catalyzed by iron and extend the utility to alcohol and amine nucleophiles. The reaction is broad in substrate scope for both coupling partners and applicable in the construction of congested tri- and tetrasubstituted carbon centers as well as β-quaternary heteroatomic products. The synthetic utility is further emphasized by gram-scale synthesis and rapid herbicide library synthesis. Overall, we provide an efficient method to prepare pharmaceutically and materially relevant carbon–heteroatom bonds by expanding iron-catalyzed cross-coupling reactions to the coupling of sp3-hybridized organohalides with soft nucleophiles.

Human-structure and human-structure-human interaction in electro-quasistatic regime

Augmented living equipped with electronic devices requires widespread connectivity and a low-loss communication medium for humans to interact with ambient technologies. However, traditional radiative radio frequency-based communications require wireless pairing to ensure specificity during information exchange, and with their broadcasting nature, these incur energy absorption from the surroundings. Recent advancements in electroquasistatic body-coupled communication have shown great promise by utilizing conductive objects like the human body as a communication medium. Here we propose a fundamental set of modalities of non-radiative interaction by guiding electroquasistatic signals through conductive structures between humans and surrounding electronic devices. Our approach offers pairing-free communication specificity and lower path loss during touch. Here, we propose two modalities: Human-Structure Interaction and Human-Structure Human Interaction with wearable devices. We validate our theoretical understanding with numerical electromagnetic simulations and experiments to show the feasibility of the proposed approach. A demonstration of the real-time transfer of an audio signal employing an human body communications-based Human-Structure Interaction link is presented to highlight the practical impact of this work. The proposed techniques can potentially influence Human-Machine Interaction research, including the development of assistive technology for augmented living and personalized healthcare.

Responses

Your email address will not be published. Required fields are marked *