Related Articles
Climate change threatens crop diversity at low latitudes
Climate change alters the climatic suitability of croplands, likely shifting the spatial distribution and diversity of global food crop production. Analyses of future potential food crop diversity have been limited to a small number of crops. Here we project geographical shifts in the climatic niches of 30 major food crops under 1.5–4 °C global warming and assess their impact on current crop production and potential food crop diversity across global croplands. We found that in low-latitude regions, 10–31% of current production would shift outside the climatic niche even under 2 °C global warming, increasing to 20–48% under 3 °C warming. Concurrently, potential food crop diversity would decline on 52% (+2 °C) and 56% (+3 °C) of global cropland. However, potential diversity would increase in mid to high latitudes, offering opportunities for climate change adaptation. These results highlight substantial latitudinal differences in the adaptation potential and vulnerability of the global food system under global warming.
Comprehensive co-expression network reveals the fine-tuning of AsHSFA2c in balancing drought tolerance and growth in oat
Persistent activation of drought tolerance is detrimental to plant growth and development. However, the mechanism that balances plant drought tolerance and growth remains largely undetermined. Here, we constructed a comprehensive co-expression network comprising 84 transcriptome datasets associated with growth and drought tolerance in oats. Moreover, 84 functional modules and many candidate genes related to drought tolerance and growth were identified. A key candidate gene, AsHSFA2c was involved in fine-tuning the balance between drought tolerance and growth by inhibiting plant growth and positively regulating drought tolerance. Then, we determined AsDOF25 as an upstream positive regulator and AsAGO1 as the downstream target gene of AsHSFA2c. These results imply that the AsDOF25-AsHSFA2c-AsAGO1 module contributes to the balance between drought tolerance and growth in oats. Our findings and resources will facilitate the identification of key genes related to drought tolerance and further studies of the genetic basis underlying strong drought tolerance in oats.
High intensity perturbations induce an abrupt shift in soil microbial state
Soil microbial communities play a pivotal role in regulating ecosystem functioning. But they are increasingly being shaped by human-induced environmental change, including intense “pulse” perturbations, such as droughts, which are predicted to increase in frequency and intensity with climate change. While it is known that soil microbial communities are sensitive to such perturbations and that effects can be long-lasting, it remains untested whether there is a threshold in the intensity and frequency of perturbations that can trigger abrupt and persistent transitions in the taxonomic and functional characteristics of soil microbial communities. Here we demonstrate experimentally that intense pulses of drought equivalent to a 30-year drought event (<15% WHC) induce a major shift in the soil microbial community characterised by significantly altered bacterial and fungal community structures of reduced complexity and functionality. Moreover, the characteristics of this transformed microbial community persisted after returning soil to its previous moisture status. As a result, we found that drought had a strong legacy effect on bacterial community function, inducing an enhanced growth rate following subsequent drought. Abrupt transitions are widely documented in aquatic and terrestrial plant communities in response to human-induced perturbations. Our findings demonstrate that such transitions also occur in soil microbial communities in response to high intensity pulse perturbations, with potentially deleterious consequences for soil health.
Extreme drought-heatwave events threaten the biodiversity and stability of aquatic plankton communities in the Yangtze River ecosystems
Rivers are crucial to biogeochemical cycles, connecting terrestrial, oceanic, and atmospheric systems. However, their ecosystems are increasingly threatened by extreme weather events. Here we used the environmental DNA approach to assess the impact of extreme drought-heatwave events on the aquatic plankton communities of the Yangtze River. We showed that an extreme drought-heatwave event reduced the α diversity of communities, increased their β diversity, and simultaneously simplified and destabilized community network structure. This event also shifted the dominant algae taxa from Bacillariophyta to Cyanobacteria, accompanied by increases in organic carbon and labile organic carbon contents. Globally, temperature rises during this extreme drought-heatwave event are more pronounced in high-latitude regions, likely amplifying impacts on river ecosystem biodiversity and stability. Our findings highlight the vulnerability of river ecosystems to extreme events and underscore the need to mitigate climate change’s effects on river ecosystems.
Crop rotation increases Tibetan barley yield and soil quality on the Tibetan Plateau
Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality. We conducted 39 field experiments on the Tibetan Plateau, comparing short-term (≤5 years), 5–10 years and long-term (≥10 years) continuous cropping with rotation of Tibetan barley with wheat or rape. Results showed that Tibetan barley–wheat and Tibetan barley–rape rotations increased yields by 17% and 12%, respectively, while improving the soil quality index by 11% and 21%, compared with long-term continuous cropping. Both Tibetan barley rotations with wheat and rape improved soil quality and consequently yield, mainly by increasing soil microbial biomass nitrogen and microbial biomass carbon and decreasing pH. By contrast, long-term continuous cropping led to decreased soil organic matter, lower microbial biomass nitrogen and increased pH, contributing to yield decline. The benefits of rotations on crop yield and soil quality increased over time. Implementing crop rotation with wheat or rape thus offers a sustainable agricultural strategy for improving food security on the Tibetan Plateau.
Responses