Related Articles

Analysis of microbial composition and sharing in low-biomass human milk samples: a comparison of DNA isolation and sequencing techniques

Human milk microbiome studies are currently hindered by low milk bacterial/human cell ratios and often rely on 16S rRNA gene sequencing, which limits downstream analyses. Here, we aimed to find a method to study milk bacteria and assess bacterial sharing between maternal and infant microbiota. We tested four DNA isolation methods, two bacterial enrichment methods and three sequencing methods on mock communities, milk samples and negative controls. Of the four DNA isolation kits, the DNeasy PowerSoil Pro (PS) and MagMAX Total Nucleic Acid Isolation (MX) kits provided consistent 16S rRNA gene sequencing results with low contamination. Neither enrichment method substantially decreased the human metagenomic sequencing read-depth. Long-read 16S-ITS-23S rRNA gene sequencing biased the mock community composition but provided consistent results for milk samples, with little contamination. In contrast to 16S rRNA gene sequencing, 16S-ITS-23S rRNA gene sequencing of milk, infant oral, infant faecal and maternal faecal DNA from 14 mother-infant pairs provided sufficient resolution to detect significantly more frequent sharing of bacteria between related pairs compared to unrelated pairs. In conclusion, PS or MX kit-DNA isolation followed by 16S rRNA gene sequencing reliably characterises human milk microbiota, and 16S-ITS-23S rRNA gene sequencing enables studies of bacterial transmission in low-biomass samples.

Transgenerational inheritance of diabetes susceptibility in male offspring with maternal androgen exposure

Androgen exposure (AE) poses a profound health threat to women, yet its transgenerational impacts on male descendants remain unclear. Here, employing a large-scale mother-child cohort, we show that maternal hyperandrogenism predisposes sons to β-cell dysfunction. Male offspring mice with prenatal AE exhibited hyperglycemia and glucose intolerance across three generations, which were further exacerbated by aging and a high-fat diet. Mechanistically, compromised insulin secretion underlies this transgenerational susceptibility to diabetes. Integrated analyses of methylome and transcriptome revealed differential DNA methylation of β-cell functional genes in AE-F1 sperm, which was transmitted to AE-F2 islets and further retained in AE-F2 sperm, leading to reduced expression of genes related to insulin secretion, including Pdx1, Irs1, Ptprn2, and Cacna1c. The methylation signatures in AE-F1 sperm were corroborated in diabetic humans and the blood of sons with maternal hyperandrogenism. Moreover, caloric restriction and metformin treatments normalized hyperglycemia in AE-F1 males and blocked their inheritance to offspring by restoring the aberrant sperm DNA methylations. Our findings highlight the transgenerational inheritance of impaired glucose homeostasis in male offspring from maternal AE via DNA methylation changes, providing methylation biomarkers and therapeutic strategies to safeguard future generations’ metabolic health.

Optical sorting: past, present and future

Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.

Innovating beyond electrophysiology through multimodal neural interfaces

Neural circuits distributed across different brain regions mediate how neural information is processed and integrated, resulting in complex cognitive capabilities and behaviour. To understand dynamics and interactions of neural circuits, it is crucial to capture the complete spectrum of neural activity, ranging from the fast action potentials of individual neurons to the population dynamics driven by slow brain-wide oscillations. In this Review, we discuss how advances in electrical and optical recording technologies, coupled with the emergence of machine learning methodologies, present a unique opportunity to unravel the complex dynamics of the brain. Although great progress has been made in both electrical and optical neural recording technologies, these alone fail to provide a comprehensive picture of the neuronal activity with high spatiotemporal resolution. To address this challenge, multimodal experiments integrating the complementary advantages of different techniques hold great promise. However, they are still hindered by the absence of multimodal data analysis methods capable of providing unified and interpretable explanations of the complex neural dynamics distinctly encoded in these modalities. Combining multimodal studies with advanced data analysis methods will offer novel perspectives to address unresolved questions in basic neuroscience and to develop treatments for various neurological disorders.

Evolution of temporomandibular joint reconstruction: from autologous tissue transplantation to alloplastic joint replacement

The reconstruction of the temporomandibular joint presents a multifaceted clinical challenge in the realm of head and neck surgery, underscored by its relatively infrequent occurrence and the lack of comprehensive clinical guidelines. This review aims to elucidate the available approaches for TMJ reconstruction, with a particular emphasis on recent groundbreaking advancements. The current spectrum of TMJ reconstruction integrates diverse surgical techniques, such as costochondral grafting, coronoid process grafting, revascularized fibula transfer, transport distraction osteogenesis, and alloplastic TMJ replacement. Despite the available options, a singular, universally accepted ‘gold standard’ for reconstructive techniques or materials remains elusive in this field. Our review comprehensively summarizes the current available methods of TMJ reconstruction, focusing on both autologous and alloplastic prostheses. It delves into the differences of each surgical technique and outlines the implications of recent technological advances, such as 3D printing, which hold the promise of enhancing surgical precision and patient outcomes. This evolutionary progress aims not only to improve the immediate results of reconstruction but also to ensure the long-term health and functionality of the TMJ, thereby improving the quality of life for patients with end-stage TMJ disorders.

Responses

Your email address will not be published. Required fields are marked *