Related Articles
Stiff, lightweight, and programmable architectured pyrolytic carbon lattices via modular assembling
Recent advances in additive manufacturing have enabled the creation of three-dimensional (3D) architectured pyrolytic carbon (PyC) structures with ultrahigh specific strength and energy absorption capabilities. However, their scalability is limited by reduced strength at larger sizes. Here we introduce a modular assembling approach to scale up PyC lattice structures while retaining strength. Three assembling mechanisms—adhesive, Lego-adhesive, and mechanical interlocking—are explored, demonstrating notably increased specific compressive strength and modulus as size increases, driven by energy release from assembly joint fractures. Practical application is demonstrated by using assembled PyC lattices as the core of an aerospace sandwich structure, significantly enhancing indentation resistance compared to conventional aramid paper honeycomb core. The method also enables versatile designs, including curved structures for space debris protection and bio-scaffold applications. This scalable approach offers a promising pathway for integrating PyC structures into large-scale engineering applications requiring superior mechanical properties and programmability in complicated shape design.
Observation of non-Hermitian topological synchronization
Non-Hermitian topology plays a pivotal role in physical science and technology, exerting a profound impact across various scientific disciplines. Recently, the interplay between topological physics and nonlinear synchronization has aroused a great interest, leading to the emergence of an intriguing phenomenon known as topological synchronization, wherein nonlinear oscillators at boundaries synchronize through topological boundary states. To the best of our knowledge, however, this phenomenon has yet to be experimentally validated, and the study of non-Hermitian topological synchronization remains in its infancy. Here, we investigate non-Hermitian topological synchronization, uncovering the influence of system size and boundary site geometry on synchronization effects. We demonstrate that simply varying the lattice size allows transitions between three distinct types of non-Hermitian topological synchronization. Furthermore, we reveal that the geometry of the boundary sites introduces a degree of freedom, enabling the control over the configuration of non-Hermitian topological synchronization. These findings are experimentally validated using non-Hermitian nonlinear topological circuits. This work significantly broadens the scope of nonlinear non-Hermitian topological physics and opens new avenues for the application of synchronization phenomena in future technologies.
Advanced 3D printing accelerates electromagnetic wave absorption from ceramic materials to structures
As 3D printing technology and ceramic material advance, significant progress has been achieved in the field of 3D-printed ceramic materials for electromagnetic wave absorption (EMWA), transitioning from simple material fabrication to complex structure creation. This review summarizes the key advancements in ceramic materials and structures fabricated by 3D printing for EMWA. Despite significant progress, the limitations that remain in 3D-printed ceramic materials and structures for EMWA are highlighted, and future development tendencies are also identified. This review aims to motivate further development and application of 3D-printed ceramic materials and structures for EMWA.
Edge states with hidden topology in spinner lattices
Symmetries – whether explicit, latent, or hidden – are fundamental to understanding topological materials. This work introduces a prototypical spring-mass model that extends beyond established canonical models, revealing topological edge states with distinct profiles at opposite edges. These edge states originate from hidden symmetries that become apparent only in deformation coordinates, as opposed to the conventional displacement coordinates used for bulk-boundary correspondence. Our model, realized through the intricate connectivity of a spinner chain, demonstrates experimentally distinct edge states at opposite ends. By extending this framework to two dimensions, we explore the conditions required for such edge waves and their hidden symmetry in deformation coordinates. We also show that these edge states are robust against disorders that respect the hidden symmetry. This research paves the way for advanced material designs with tailored boundary conditions and edge state profiles, offering potential applications in fields such as photonics, acoustics, and mechanical metamaterials.
Current-induced motion of nanoscale magnetic torons over the wide range of the Hall angle
Current-driven dynamics of topological spin textures plays a pivotal role in potential applications for electronic devices. While two-dimensional magnetic skyrmions have garnered significant interest, their practical use is hindered by the skyrmion Hall effect—a transverse motion to the current direction that occurs as a counteraction to the topological Hall effect of electrons arising from the Berry phase effect. Here, we explore current-driven dynamics of three-dimensional topological spin textures, magnetic torons, composed of layered skyrmions with two singularities called Bloch points at their ends. Through extensive numerical simulations, we show that torons exhibit a unique Hall motion ranging from the zero Hall effect, a purely longitudinal motion, to the perfect Hall effect, a purely transverse motion accompanied by no longitudinal motion. Such flexible and controllable behaviors stem from anisotropic potential barriers on the discrete lattice for nanoscale torons. Our results provide a method to probe the topology of three-dimensional magnetic textures and contribute to advanced topological spintronics beyond the realm of skyrmions.
Responses