Related Articles

A first-in-human study of quantitative ultrasound to assess transplant kidney fibrosis

Kidney transplantation is the optimal treatment for renal failure. In the United States, a biopsy at the time of organ procurement is often used to assess kidney quality to decide whether it should be used for transplant. This assessment is focused on renal fibrotic burden, because fibrosis is an important measure of irreversible kidney injury. Unfortunately, biopsy at the time of transplant is plagued by problems, including bleeding risk, inaccuracies introduced by sampling bias and rapid sample preparation, and the need for round-the-clock pathology expertise. We developed a quantitative algorithm, called renal H-scan, that can be added to standard ultrasound workflows to quickly and noninvasively measure renal fibrotic burden in preclinical animal models and human transplant kidneys. Furthermore, we provide evidence that biopsy-based fibrosis estimates, because of their highly localized nature, are inaccurate measures of whole-kidney fibrotic burden and do not associate with kidney function post-transplant. In contrast, we show that whole-kidney H-scan fibrosis estimates associate closely with post-transplant renal function. Taken together, our data suggest that the addition of H-scan to standard ultrasound workflows could provide a safe, rapid and easy-to-perform method for accurate quantification of transplant kidney fibrotic burden, and thus better prediction of post-transplant renal outcomes.

Evolving adeno-associated viruses for gene transfer to the kidney via cross-species cycling of capsid libraries

The difficulty of delivering genes to the kidney has limited the translation of genetic medicines, particularly for the more than 10% of the global population with chronic kidney disease. Here we show that new variants of adeno-associated viruses (AAVs) displaying robust and widespread transduction in the kidneys of mice, pigs and non-human-primates can be obtained by evolving capsid libraries via cross-species cycling in different kidney models. Specifically, the new variants, AAV.k13 and AAV.k20, were enriched from the libraries following sequential intravenous cycling through mouse and pig kidneys, ex vivo cycling in human organoid cultures, and ex vivo machine perfusion in isolated kidneys from rhesus macaques. The two variants transduced murine kidneys following intravenous administration, with selective tropism for proximal tubules, and led to markedly higher transgene expression than parental AAV9 vectors in proximal tubule epithelial cells within human organoid cultures and in autotransplanted pig kidneys. Following ureteral delivery, AAV.k20 efficiently transduced kidneys in pigs and macaques. The AAV.k13 and AAV.k20 variants are promising vectors for therapeutic gene-transfer applications in kidney diseases and transplantation.

MicroRNA-379-5p attenuates cancer stem cells and reduces cisplatin resistance in ovarian cancer by regulating RAD18/Polη axis

Ovarian cancer (OC) is an aggressive malignancy of the female reproductive organs, associated with a low 5-year survival rate. Emerging evidence suggests the pivotal role of microRNAs (miRNAs) in regulating chemoresistance and metastasis in OC, primarily through cancer stem cells (CSCs), also known as cancer stem-like cells (CSLCs). Herein, we demonstrate that miR-379-5p is downregulated in several OC cell populations including both cell lines and patient tumor samples. Furthermore, overexpression of miR-379-5p effectively inhibits CSCs and counteracts cisplatin-induced expansion of CSCs. Further mechanistic investigations identify RAD18, a DNA repair protein involved in translesion DNA synthesis (TLS), as a direct target of miR-379-5p. Moreover, a negative correlation between miR-379-5p and RAD18 expression is observed in ovarian CSCs isolated from OC patients. The downregulation of RAD18 inhibits stem-like phenotypes and enhances the sensitivity of ovarian CSCs to cisplatin treatment. Importantly, miR-379-5p-mediated inhibition of RAD18 prevents the repair synthesis in CSCs by promoting the accumulation of DNA damage. In vivo studies further reveal that miR-379-5p enhances DNA damage, which, in turn, inhibits tumor cell proliferation in athymic nude mice. Remarkably, targeting of RAD18 by miR-379-5p prevents monoubiquitination of proliferating cell nuclear antigen (PCNA), resulting in reduced DNA Polymerase η (a TLS polymerase that helps to bypass DNA lesions) recruitment to lesion sites. In the absence of Polη, the persisting DNA lesions cause activation of cell cycle arrest and apoptosis pathway in CSCs. Therefore, our findings unveil a novel mechanism whereby miR-379-5p overexpression curtails CSCs by modulating the RAD18/Polη axis.

ACOT12, a novel factor in the pathogenesis of kidney fibrosis, modulates ACBD5

Lipid metabolism, particularly fatty acid oxidation dysfunction, is a major driver of renal fibrosis. However, the detailed regulatory mechanisms underlying this process remain unclear. Here we demonstrated that acyl-CoA thioesterase 12 (Acot12), an enzyme involved in the hydrolysis of acyl-CoA thioesters into free fatty acids and CoA, is a key regulator of lipid metabolism in fibrotic kidneys. A significantly decreased level of ACOT12 was observed in kidney samples from human patients with chronic kidney disease as well as in samples from mice with kidney injuries. Acot12 deficiency induces lipid accumulation and fibrosis in mice subjected to unilateral ureteral obstruction (UUO). Fenofibrate administration does not reduce renal fibrosis in Acot12−/− mice with UUO. Moreover, the restoration of peroxisome proliferator-activated receptor α (PPARα) in Acot12−/−Pparα−/− kidneys with UUO exacerbated lipid accumulation and renal fibrosis, whereas the restoration of Acot12 in Acot12−/− Pparα−/− kidneys with UUO significantly reduced lipid accumulation and renal fibrosis, suggesting that, mechanistically, Acot12 deficiency exacerbates renal fibrosis independently of PPARα. In Acot12−/− kidneys with UUO, a reduction in the selective autophagic degradation of peroxisomes and pexophagy with a decreased level of ACBD5 was observed. In conclusion, our study demonstrates the functional role and mechanistic details of Acot12 in the progression of renal fibrosis, provides a preclinical rationale for regulating Acot12 expression and presents a novel means of preventing renal fibrosis.

Targeting AKT as a promising strategy for SOX2-positive, chemoresistant osteosarcoma

Osteosarcoma (OS) is the most prevalent type of primary malignant bone cancer and currently lacks effective targeted treatments. Increasing evidence indicates that SOX2 overexpression is a primary driver of OS. By screening a small-molecule kinase inhibitor library, we identified AKT as a kinase essential for robust SOX2 expression in OS cells. AKT was found to be frequently overexpressed in OS and positively correlated with SOX2 protein levels. We demonstrated that AKT has no effect on SOX2 transcription but promotes SOX2 protein stability. Mechanistically, AKT binds to and phosphorylates SOX2 at T116, preventing SOX2 ubiquitination and proteasome-dependent degradation by ubiquitin E3 ligases UBR5 and STUB1. Moreover, we found that AKT-SOX2 axis is a significant modulator of cancer stemness and chemoresistance and that the combination of AKT inhibitor MK2206 and cisplatin resulted in a synergistic and potent inhibition of OS tumor growth in the PDX model. In conclusion, we identified a critical role for AKT in promoting SOX2 overexpression, tumor stemness, and chemoresistance in OS, and provided evidence that targeting AKT combined with chemotherapy may hold promise for treating refractory OS.

Responses

Your email address will not be published. Required fields are marked *