Related Articles

Error-driven upregulation of memory representations

Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood. To address this gap, participants performed a feedback-based association learning task and a 1-back localizer task. Increased hemodynamic responses in posterior medial frontal cortex were found for internal and external origins of memory error evidence, and during post-error encoding success as quantified by subsequent recall of face-associated memories. A localizer-based machine learning model displayed a network of cognitive control regions, including posterior medial frontal and dorsolateral prefrontal cortices, whose activity was related to face-processing evidence in the fusiform face area. Representation strength was higher during failed recall and increased during encoding when subsequent recall succeeded. These data enhance our understanding of the neurophysiological mechanisms of adaptive learning by linking the need for learning with increased processing of the relevant stimulus category.

Psychological booster shots targeting memory increase long-term resistance against misinformation

An increasing number of real-world interventions aim to preemptively protect or inoculate people against misinformation. Inoculation research has demonstrated positive effects on misinformation resilience when measured immediately after treatment via messages, games, or videos. However, very little is currently known about their long-term effectiveness and the mechanisms by which such treatment effects decay over time. We start by proposing three possible models on the mechanisms driving resistance to misinformation. We then report five pre-registered longitudinal experiments (Ntotal = 11,759) that investigate the effectiveness of psychological inoculation interventions over time as well as their underlying mechanisms. We find that text-based and video-based inoculation interventions can remain effective for one month—whereas game-based interventions appear to decay more rapidly—and that memory-enhancing booster interventions can enhance the diminishing effects of counter-misinformation interventions. Finally, we propose an integrated memory-motivation model, concluding that misinformation researchers would benefit from integrating knowledge from the cognitive science of memory to design better psychological interventions that can counter misinformation durably over time and at-scale.

Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation

The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.

Astrocyte-to-neuron H2O2 signalling supports long-term memory formation in Drosophila and is impaired in an Alzheimer’s disease model

Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron H2O2 signalling cascade in Drosophila that is essential for long-term memory formation. Stimulation of astrocytes by acetylcholine induces an increase in intracellular calcium ions, which triggers the generation of extracellular superoxide (O2) by astrocytic NADPH oxidase. Astrocyte-secreted superoxide dismutase 3 (Sod3) converts O2 to hydrogen peroxide (H2O2), which is imported into neurons of the olfactory memory centre, the mushroom body, as revealed by in vivo H2O2 imaging. Notably, Sod3 activity requires copper ions, which are supplied by neuronal amyloid precursor protein. We also find that human amyloid-β peptide, implicated in Alzheimer’s disease, inhibits the nAChRα7 astrocytic cholinergic receptor and impairs memory formation by preventing H2O2 synthesis. These findings may have important implications for understanding the aetiology of Alzheimer’s disease.

Neural codes track prior events in a narrative and predict subsequent memory for details

Throughout our lives, we learn schemas that specify what types of events to expect in particular contexts and the temporal order in which these events usually occur. Here, our first goal was to investigate how such context-dependent temporal structures are represented in the brain during processing of temporally extended events. To accomplish this, we ran a 2-day fMRI study (N = 40) in which we exposed participants to many unique animated videos of weddings composed of sequences of rituals; each sequence originated from one of two fictional cultures (North and South), where rituals were shared across cultures, but the transition structure between these rituals differed across cultures. The results, obtained using representational similarity analysis, revealed that context-dependent temporal structure is represented in multiple ways in parallel, including distinct neural representations for the culture, for particular sequences, and for past and current events within the sequence. Our second goal was to test the hypothesis that neural schema representations scaffold memory for specific details. In keeping with this hypothesis, we found that the strength of the neural representation of the North/South schema for a particular wedding predicted subsequent episodic memory for the details of that wedding.

Responses

Your email address will not be published. Required fields are marked *