Related Articles
Another common genetic ataxia in South Korea: Spinocerebellar ataxia 36
Spinocerebellar ataxias (SCAs) represent a diverse group of neurodegenerative disorders characterized by progressive cerebellar ataxia. In South Korea, diagnostic laboratories typically focus on common SCA subtypes, leaving the prevalence of rare SCAs uncertain. This study aimed to explore the frequency of rarer forms of SCA, including SCA10, 12, 31, and 36 utilizing molecular techniques including long-read sequencing (LRS). Patients from ataxia cohorts who remained undiagnosed after testing for common genetic ataxias (SCA1, 2, 3, 6, 7, 8 17, and dentatorubral-pallidoluysian atrophy) were analyzed, along with unselected ataxia patients referred for screening of common SCAs. Expanded alleles for SCA10, 12, 31, and 36 were investigated through allele-length PCR, repeat-primed PCR, and LRS. Among 78 patients from 67 families with undiagnosed cerebellar ataxia, SCA36 was identified in 8 families (11.9%), while SCA10, 12, or 31 were not found. In unselected ataxia, SCA36 was present in 1.0% (1/99). Korean SCA36 patients exhibited clinical characteristics similar to global reports, with a higher incidence of hyperreflexia. The haplotype of expanded alleles identified in LRS was consistent among SCA36 patients. The findings indicate that SCA36 accounts for 11.9% of diagnoses after excluding common SCAs and 1.0% in unselected ataxia patients. The study underscores the prevalence of SCA36 in South Korea and emphasizes the potential of LRS as a diagnostic tool for this condition. Integrating LRS into diagnostic protocol could enhance diagnostic efficacy, particularly in populations with a high prevalence of SCA36 like South Korea. Further research is necessary to standardize LRS for routine clinical application.
Coastal wetland resilience through local, regional and global conservation
Coastal wetlands, including tidal marshes, mangrove forests and tidal flats, support the livelihoods of millions of people. Understanding the resilience of coastal wetlands to the increasing number and intensity of anthropogenic threats (such as habitat conversion, pollution, fishing and climate change) can inform what conservation actions will be effective. In this Review, we synthesize anthropogenic threats to coastal wetlands and their resilience through the lens of scale. Over decades and centuries, anthropogenic threats have unfolded across local, regional and global scales, reducing both the extent and quality of coastal wetlands. The resilience of existing coastal wetlands is driven by their quality, which is modulated by both physical conditions (such as sediment supply) and ecological conditions (such as species interactions operating from local through to global scales). Protection and restoration efforts, however, are often localized and focus on the extent of coastal wetlands. The future of coastal wetlands will depend on an improved understanding of their resilience, and on society’s actions to enhance both their extent and quality across different scales.
Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
Engineering bone/cartilage organoids: strategy, progress, and application
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Rising greenhouse gas emissions embodied in the global bioeconomy supply chain
The bioeconomy is key to meeting climate targets. Here, we examine greenhouse gas emissions in the global bioeconomy supply chain (1995–2022) using advanced multi-regional input-output analysis and a global land-use change model. Considering agriculture, forestry, land use, and energy, we assess the carbon footprint of biomass production and examine its end-use by provisioning systems. The footprint increased by 3.3 Gt CO2-eq, with 80% driven by international trade, mainly beef and biochemicals (biofuels, bioplastics, rubber). Biochemicals showed the largest relative increase, doubling due to tropical land-use change (feedstock cultivation) and China’s energy-intensive processing. Food from retail contributes most to the total biomass carbon footprint, while food from restaurants and canteens account for >50% of carbon-footprint growth, with three times higher carbon intensity than retail. Our findings emphasize the need for sustainable sourcing strategies and that adopting renewables and halting land-use change could reduce the bioeconomy carbon footprint by almost 60%.
Responses