Related Articles

Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain

Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.

Pathogen stress heightens sensorimotor dimensions in the human collective semantic space

Infectious diseases have been major causes of death throughout human history and are assumed to broadly affect human psychology. However, whether and how conceptual processing, an internal world model central to various cognitive processes, adapts to such salient stress variables remains largely unknown. To address this, we conducted three studies examining the relationship between pathogen severity and semantic space, probed through the main neurocognitive semantic dimensions revealed by large-scale text analyses: one cross-cultural study (across 43 countries) and two historical studies (over the past 100 years). Across all three studies, we observed that increasing pathogen severity was associated with an enhancement of the sensory-motor dimension in the collective semantic space. These patterns remained robust after controlling for the effects of sociocultural variables, including economic wealth and societal norms of tightness. These results highlight the universal dynamic mechanisms of collective semantics, such that pathogen stress potentially drives sensorially oriented semantic processing.

Skeletal interoception and prospective application in biomaterials for bone regeneration

Accumulating research has shed light on the significance of skeletal interoception, in maintaining physiological and metabolic homeostasis related to bone health. This review provides a comprehensive analysis of how skeletal interoception influences bone homeostasis, delving into the complex interplay between the nervous system and skeletal system. One key focus of the review is the role of various factors such as prostaglandin E2 (PGE2) in skeletal health via skeletal interoception. It explores how nerves innervating the bone tissue communicate with the central nervous system to regulate bone remodeling, a process critical for maintaining bone strength and integrity. Additionally, the review highlights the advancements in biomaterials designed to utilize skeletal interoception for enhancing bone regeneration and treatment of bone disorders. These biomaterials, tailored to interact with the body’s interoceptive pathways, are positioned at the forefront of innovative treatments for conditions like osteoporosis and fractures. They represent a convergence of bioengineering, neuroscience, and orthopedics, aiming to create more efficient and targeted therapies for bone-related disorders. In conclusion, the review underscores the importance of skeletal interoception in physiological regulation and its potential in developing more effective therapies for bone regeneration. It emphasizes the need for further research to fully understand the mechanisms of skeletal interoception and to harness its therapeutic potential fully.

Latent circuit inference from heterogeneous neural responses during cognitive tasks

Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity and task variables leave unknown how heterogeneous responses arise from connectivity to drive behavior. We develop the latent circuit model, a dimensionality reduction approach in which task variables interact via low-dimensional recurrent connectivity to produce behavioral output. We apply the latent circuit inference to recurrent neural networks trained to perform a context-dependent decision-making task and find a suppression mechanism in which contextual representations inhibit irrelevant sensory responses. We validate this mechanism by confirming the behavioral effects of patterned connectivity perturbations predicted by the latent circuit model. We find similar suppression of irrelevant sensory responses in the prefrontal cortex of monkeys performing the same task. We show that incorporating causal interactions among task variables is critical for identifying behaviorally relevant computations from neural response data.

A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics

For accurate perception and motor control, an animal must distinguish between sensory experiences elicited by external stimuli and those elicited by its own actions. The diversity of behaviors and their complex influences on the senses make this distinction challenging. Here, we uncover an action–cue hub that coordinates motor commands with visual processing in the brain’s first visual relay. We show that the ventral lateral geniculate nucleus (vLGN) acts as a corollary discharge center, integrating visual translational optic flow signals with motor copies from saccades, locomotion and pupil dynamics. The vLGN relays these signals to correct action-specific visual distortions and to refine perception, as shown for the superior colliculus and in a depth-estimation task. Simultaneously, brain-wide vLGN projections drive corrective actions necessary for accurate visuomotor control. Our results reveal an extended corollary discharge architecture that refines early visual transformations and coordinates actions via a distributed hub-and-spoke network to enable visual perception during action.

Responses

Your email address will not be published. Required fields are marked *